数学基础知识(质数和约数C++)

一.判断质数

1.试除法求质数

(1)暴力做法O(n)

做法:从2~n遍历找约数,如果不存在约数则n为质数

(2)优化做法O(sqrt(n))

性质:如果i能整除n,那么n/i也能整除n,即约数是成对出现的。
因此我们只需要去找每一对质因子中较小的那个质因子即可,所以我们遍历的时候只需要从2枚举到n/i即可,这样时间复杂度可以降低到O(sqrt(n));

bool is_prime(int n){
	bool flag = true;
	for(int i = 2;i<=n/i;i++){
		if(n%i==0){
			flag = false;
			break;
		}
	}
	return flag;
}

二.求2~n中的所有质数

1.筛法求质数

(1)朴素筛法O(nlogn)

做法:从2~n枚举,对于每个i我们都把它的所有倍数都筛掉,这样剩下未被筛掉的数就是质数。(因为如果没有被筛掉说明在2到i中不存在其的约数,即为质数)

int primes[N];
bool st[N];
void get_prime(int n){
	int cnt = 0;
	for(int i = 2;i<=n;i++){
		if(!st[i]) primes[cnt++] = i;
		for(int j = i+i;j<=n;j+=i){
			st[j] = true;
		}
	}
}
(2)埃氏筛法O(nloglogn)

通过观察我们可以发现,我们其实没有必要把每个数的倍数都筛一遍,只需要把所有质数的倍数筛掉即可,因为所有合数都是由质数组合成的(合数分解)

int primed[N];
bool st[N];
void get_prime(int n){
	int cnt = 0;
	for(int i = 2;i<=n;i++){
		if(!st[i]){
			primes[cnt++] = i;
			for(int j = i+i;j<=n;j+=i){
				st[j] = true;
			}
		}
	}
}
(3)线性筛法O(n)

我们之前在判断质数的方法中提到过,质因子都是成对出现的,因此同样我们只需要枚举较小的那个质因子即可(即所有合数都只会被它的最小质因子筛掉)
所以我们需要对每一个i都从之前的质数中去找它的最小质因子,找到了就break掉。

int primes[N];
bool st[N];
void get_prime(int n){
	int cnt = 0;
	for(int i = 2;i<=n;i++){
		if(!st[i]) primes[cnt++] = i;
		for(int j = 0;primes[j]<=n/i;j++){//i每次更新都要把2~i之间的数筛一遍,且我们只找较小的那个约数
			st[primes[j]*i] = true;//顺便筛掉质数的倍数
			if(i%primes[j]==0) break;//找到i的最小质因子,加上这个优化就会变为线性的
		}
	}
}

三.分解质因数

1.试除法分解质因数

对于每个合数n我们都可以将其分解成 ∏ i = 1 k P i a i \prod_{i=1}^{k} P_i^{a_i} i=1kPiai的形式,其中P为n的质因子,这个过程我们成为分解质因数。

(1)暴力做法O(n)

做法:从2~n枚举所有数,如果n%i==0,再用while去求该质因子的幂次

(2)优化算法

性质:n中最多只包含一个大于sqrt(n)的质因子。
因此我们枚举的时候只需要枚举2~n/i即可,最后如果n>1,则剩下的这个就是n中那个大与sqrt(n)的质因子。

void divide(int n){
	for(int i = 2;i<=n/i;i++){
		int s = 0;
		if(n%i==0){
			while(n%i==0) n/=i,s++;
			cout<<i<<' '<<s<<endl;
		}
		if(n>1) cout<<n<<' '<<1<<endl;
	}
}

四.约数

1.试除法求一个数的所有约数

做法:做法与判断质数的做法相似,只需要在1到n/i中去找较小的那个约数即可,较大的那个约数可以通过计算得到。

vecrot<int> get_divide(int n){
	vector<int> res;
	for(int i = 1;i<=n/i;i++){
		if(n%i==0){
			res.push_back(i);
			if(i!=n/i) res.push_back(n/i);//放入之前判断一下是否相同
		}
	}
}

2.约数个数

因为对于任意一个合数n我们都可以将其分解为 ∏ i = 1 k P i a i \prod_{i=1}^{k} P_i^{a_i} i=1kPiai的形式,一个合数的约数个数应为 ∏ i = 1 k ( a i + 1 ) \prod_{i=1}^{k} (a_i+1) i=1k(ai+1),因为每个质因数的次数都可以从0取到 a i a_i ai,因此有这么多种组合。

3.约数之和

合数n的约数之和为 ∏ i = 1 k ( P i 0 + P i 1 + . . . + P i k ) \prod_{i=1}^{k}(P_i^0+P_i^1+...+P_i^k) i=1k(Pi0+Pi1+...+Pik),该式展开后就是各个约数相加。

五.欧拉函数φ(n)

1.普通方法求欧拉函数

φ(n)用于快速求取1~n中与n互质的数的个数。

公式:如果合数n分解质因数之后的结果为 ∏ i = 1 k P i a i \prod_{i=1}^{k} P_i^{a_i} i=1kPiai,则
φ(n) = n(1- 1 P 1 \frac{1}{P_1} P11)(1- 1 P 2 \frac{1}{P_2} P21)…(1- 1 P k \frac{1}{P_k} Pk1)(记住即可,证明以后有时间再补)

int phi(int n){
    int res = n;
    for(int i = 2;i<=n/i;i++){
        if(n%i==0){
            res = res/i*(i-1);//为了防止出现res*(1-1/i)出现小数,因此先除i再乘上(i-1)
            while(n%i==0){
                n/=i;
            }
        }
    }
    if(n>1) res = res/n*(n-1);
    return res;
}

2.线性筛法求欧拉函数O(n)

该方法用于求1~n所有数的欧拉函数值

线性筛法求欧拉函数的思想与之前利用线性筛法求质数差不多,只不过这里我们需要分情况来讨论

(1)如果i为质数

那么φ(i) = i-1,因为1~i-1之间的数都与 i 互质。

(2)如果i不为质数,P = primes[j]*i,i%primes[j]==0时

某一个数的欧拉函数值跟其分解质因数后质因数的次数无关
因为primes[j]是i的一个质因子,因此在i的欧拉函数中已经出现了(1- 1 p r i m e s [ j ] \frac{1}{primes[j]} primes[j]1)这一项了,而i和P只相差primes[j]倍,所以它们分解质因数的结果只相差primes[j]的一次方,因此是它们的欧拉函数之间也只相差primes[j]倍,即
φ(i) = i* ∏ i = 1 n p i a i \prod_{i=1}^{n} p_i^{a_i} i=1npiai
φ( P ) = primes[j] * i * ∏ i = 1 n p i a i \prod_{i=1}^{n} p_i^{a_i} i=1npiai = primes[j]*φ(i)

(3)如果i不为质数,P = primes[j]*i,i%primes[j]!=0时

这时primes[j]不是i的一个质因子,i和P的欧拉函数就会相差primes[j]*(1- 1 p r i m e s [ j ] \frac{1}{primes[j]} primes[j]1)这么多倍

int primes[N],phi[N];
bool st[N];
void get_eulers(int n){
	phi[1] = 1;//特殊规定
	int cnt = 0;
	for(int i = 2;i<=n;i++){
		if(!st[i]){
			primes[cnt++] = i;
			phi[i] = i-1;
		}
		for(int j = 0;primes[j]<=n/i;j++){
			st[primes[j]*i] = true;
			if(i%primes[j]==0){
				phi[primes[j]*i] = phi[i]+primes[j];//这个公式成立必须是primes[j]也是i的质因子才行
				break;
			}
			phi[primes[j]*i] = phi[i]*(primes[j]-1);
		}
	}
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值