自变量 x x x的差分就是微分: Δ x = d x \Delta x=dx Δx=dx
因变量 y y y的差分,是函数 y y y的变化量: Δ y = y ( x + Δ x ) − y ( x ) \Delta y=y(x+\Delta x)-y(x) Δy=y(x+Δx)−y(x)
因变量 y y y的微分,是指函数图像在某一点处的切线在横坐标取得增量 Δ x Δx Δx以后,纵坐标取得的增量 d y dy dy: d y = f ′ ( x ) d x dy=f'(x)dx dy=f′(x)dx
总结:微分是差分的线性部分,两者都是增量,差分>微分 Δ y = y ( x + Δ x ) − y ( x ) \Delta y=y(x+\Delta x)-y(x) Δy=y(x+Δx)−y(x) = y ′ ( x ) Δ x + o ( Δ x ) =y'(x)\Delta x +o(\Delta x) =y′(x)Δx+o(Δx) = d y + o ( Δ x ) =dy+o(\Delta x) =dy+o(Δx)
导数为微分比值,也叫微商。即: f ′ ( x ) = d y d x f'(x)=\frac{dy}{dx} f′(x)=dxdy
如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处的导数,记作:
参考:
原文:https://blog.csdn.net/Bluenapa/article/details/82993714