数学
麦地与诗人
读书不是为了雄辩和驳斥,也不是为了轻信和盲从,而是为了思考和权衡.
展开
-
概率质量函数 Vs. 概率密度函数
概率质量函数 Vs. 概率密度函数在概率论中,概率质量函数(probability mass function,简写为pmf)是离散随机变量在各特定取值上的概率。概率质量函数和概率密度函数不同之处在于:概率质量函数是对离散随机变量定义的,本身代表该值的概率;概率密度函数是对连续随机变量定义的,本身不是概率,只有对连续随机变量的概率密度函数在某区间内进行积分后才是概率。...原创 2020-03-20 09:36:24 · 7079 阅读 · 0 评论 -
协方差、相关系数
关于协方差和相关系数,下面这篇博客是讲的最清楚的了!“通俗理解协方差与相关系数” https://blog.csdn.net/red_stone1/article/details/82754517#commentBox转载 2019-08-30 11:10:47 · 189 阅读 · 0 评论 -
浅谈参数估计
贾俊平<统计学>阅读笔记!参数估计参数估计是推断统计的重要内容之一,它是在抽样及抽样分布的基础上,根据样本统计量来推断所关心的总体参数.估计量如果能够掌握总体的全部数据,那么只需要作一些简单的统计描述,就可以得到所关心的总体特征,比如,总体均值、方差、比例,等。但现实情况比较复杂,有些现象的范围比较广,不可能对总体中的每个单位都进行测定。或者,有些总体的个数很多,不可能也没...原创 2019-09-03 09:38:34 · 18825 阅读 · 0 评论 -
协方差和相关系数
什么是协方差(Covariance)?协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。以上是某百科的解释。等等!是不是还...转载 2019-09-03 15:43:40 · 10685 阅读 · 7 评论 -
Mathpix-----再也不用手敲复杂公式!
Mathpix (全称, Mathpix Snipping Tool)看论文时候总少不了一些数学公式,在word中一个字符一个字符的敲也是可以实现的,但是效率太低了。推荐一款好用工具,在复杂的公式,只要有照片就能转成LaTeX,MathType。用 LaTex 表达式写数学公式还是挺麻烦的,至少一般人做不到手写速度。但是我们有 Mathpix Snip 啊,只要截个图,公式会自动转化为 La...原创 2019-09-16 21:57:43 · 11096 阅读 · 8 评论 -
用易于理解的语言解释矩阵的正定及半正定
如果线性代数里的知识都可以用几何知识来解释的话,会很棒吧!首先半正定矩阵定义为:XTMX≥0X^TMX \geq 0XTMX≥0其中XXX是向量,MMM是变换矩阵。我们换一个思路看这个问题,矩阵变换中,MXMXMX 代表对向量XXX进行变换,我们假设变换后的向量为YYY,记做 Y=MXY=MXY=MX。于是半正定矩阵可以写成:XTY≥0X^TY \geq 0XTY≥0这个是不是很熟悉呢...转载 2019-09-29 21:01:30 · 1376 阅读 · 1 评论 -
通过矩阵研究二次函数(方程)-----理解二次型
转载自马同学高等数学1 二次函数(方程)的特点1.1 二次函数最简单的一元二次函数就是:给它增加一次项不会改变形状:增加常数项就更不用说了,更不会改变形状。1.2 二次方程下面是一个二元二次方程:给它增加一次项也不会改变形状,只是看上去有些伸缩:1.3 小结对于二次函数或者二次方程,二次部分是主要部分,往往研究二次这部分就够了。2 通过矩阵来研究二次方程因为二次函数...转载 2019-09-30 11:27:14 · 9277 阅读 · 3 评论 -
联合概率、边缘概率、条件概率
1. 联合概率假设有随机变量X与Y,此时P(X=a,Y=b)P(X=a,Y=b)P(X=a,Y=b)用于表示“X=a且Y=bX=a且Y=bX=a且Y=b“的概率。这类包含多个条件且所有条件同时成立的概率成为联合概率。2.边缘概率与上对应的,P(X=a)P(X=a)P(X=a)或P(Y=b)P(Y=b)P(Y=b)这类仅与单个随机变量有关的概率,称为边缘概率。3. 条件概率条件概率是指事...原创 2019-10-11 08:46:35 · 8567 阅读 · 0 评论 -
贝叶斯方法预热3-----先验概率、后验概率
引例:隔壁老王要去10公里外的一个地方办事,他可以选择:1. 走路2. 骑自行车3. 开车并花费了一定时间到达目的地。在这个事件中,可以把交通方式(走路、骑车或开车)认为是原因,花费的时间认为是结果。后验概率若,老王花了一个小时的时间完成了10公里的距离:那么很大可能是骑车过去的,当然也有较小可能老王是个健身达人跑步过去的,或者开车过去但是堵车很严重。若,老王一共用了...原创 2019-10-11 09:46:00 · 562 阅读 · 0 评论 -
差分与微分区别
自变量xxx的差分就是微分:Δx=dx\Delta x=dxΔx=dx因变量yyy的差分,是函数yyy的变化量:Δy=y(x+Δx)−y(x)\Delta y=y(x+\Delta x)-y(x)Δy=y(x+Δx)−y(x)因变量yyy的微分,是指函数图像在某一点处的切线在横坐标取得增量ΔxΔxΔx以后,纵坐标取得的增量dydydy:dy=f′(x)dxdy=f'(x)d...转载 2019-08-27 14:54:43 · 8190 阅读 · 0 评论 -
直观理解特征值、特征向量
把矩阵看作是运动,对于运动而言,最重要的当然就是运动的速度和方向特征值就是运动的速度特征向量就是运动的方向说明下,因为线性变换总是在各种基之间变来变去,所以我下面画图都会把作图所用的基和原点给画出来。在i⃗,j⃗\vec i,\vec ji,j下面有个向量v⃗\vec vv :随便左乘一个矩阵AAA,图像看上去没有什么特殊的:我调整下 v⃗\vec vv 的方向,图像看上...转载 2019-07-11 21:12:31 · 1697 阅读 · 0 评论 -
向量
向量在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。向量的表示方法n维向量线性代数中“n维向量”中的“n维”是指向量的元素个数为n。比如,三维向量的形式为α=(x1,...原创 2019-07-30 10:29:34 · 1319 阅读 · 0 评论 -
理解矩阵
《理解矩阵一》原文《理解矩阵一》https://blog.csdn.net/myan/article/details/647511前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情。可怜的chensh,谁让你趟这个地雷阵?...转载 2019-07-10 16:20:00 · 298 阅读 · 0 评论 -
概率论--伯努力
伯努力试验(Bernoulli experiment)伯努利试验(Bernoulli experiment)是在同样的条件下重复地、相互独立地进行的一种随机试验,其特点是该随机试验只有两种可能结果:发生或者不发生。我们假设该项试验独立重复地进行了nnn次,那么就称这一系列重复独立的随机试验为n重伯努利试验,或称为伯努利概型。单个伯努利试验是没有多大意义的,然而,当我们反复进行伯努利试验,去观...原创 2019-06-06 10:04:12 · 1885 阅读 · 0 评论 -
图示递归
从前有座山,山里有座庙,庙里有个和尚,和尚在讲故事,从前有座山,山里有座庙,庙里有个和尚,和尚在讲故事,从前有座山…我们使用的词典,本身就是递归,为了解释一个词,需要使用更多的词。当你查一个词,发现这个词的解释中某个词仍然不懂,于是你开始查这第二个词,可惜,第二个词里仍然有不懂的词,于是查第三个词,这样查下去,直到有一个词的解释是你完全能看懂的,那么递归走到了尽头,然后你开始后退,逐个明...原创 2019-07-11 11:06:35 · 786 阅读 · 0 评论 -
用例子来解释先验,后验
作者:Agenter 链接:知乎https://www.zhihu.com/question/24261751/answer/158547500例子隔壁老王要去10公里外的一个地方办事,他可以选择:走路骑自行车开车并花费了一定时间到达目的地。在这个事件中,可以把交通方式(走路、骑车或开车)认为是原因,花费的时间认为是结果。后验概率若,老王花了一个小时的时间完成了10公里的距离...原创 2019-07-11 14:35:56 · 8594 阅读 · 9 评论 -
用样本估计总体
总体、个体、样本总体是在进行统计分析时,研究对象的全部;个体是组成总体的每个研究对象;样本是从总体X中按一定的规则抽出的个体的全部,用X1,X2,…,XnX_1,X_2,…,X_nX1,X2,…,Xn表示;样本中所含个体的个数称为样本容量,用nnn表示。就好比要研究一个班的平均身高:这个班的所有同学的身高就是总体;A同学的身高就是1个个体;按一定的规律抽出20个同学的身高研...原创 2019-07-04 09:59:07 · 27462 阅读 · 0 评论 -
理解随机变量
随机变量在许多概率模型中试验结果是数值化的,例如,许多仪器的仪表的读数,以及股价等。也有其他一些例子中的试验结果不是数值化的,但是呢,这些试验结果是与某些数值相联系的。例如:连续抛掷一枚硬币共5次,在这个试验中,正面出现的次数是一个随机变量在两次抛掷一个骰子的试验中,下面的例子是随机变量:两次抛掷骰子得到的点数之和;两次抛掷骰子,得到的点数为6的次数在传输信号的实验中,传...原创 2019-06-06 10:28:09 · 18405 阅读 · 3 评论 -
为什么定积分可以求面积?
1. 定积分是怎么定义的?按照现在的语言就是∫abf(x)dx=∑f(x)dx\int_a^bf(x)dx=\sum f(x)dx∫abf(x)dx=∑f(x)dx,所以定积分最初是被定义成面积的。2. 牛顿-莱布尼兹公式∫abf(x)dx=F(b)−F(a)\int_a^bf(x)dx=F(b)-F(a)∫abf(x)dx=F(b)−F(a)定积分可以求面积,我们已经知道了,但是...转载 2019-07-11 19:44:41 · 25873 阅读 · 2 评论 -
快速回忆微分方程
回忆微分方程: 含有自变量、未知函数及未知函数的某些导数的方程式称为微分方程。当未知函数是一元函数时就称为常微分方程。若线性微分方程的系数均为常数,则为常系数微分方程。关于解方程首先,应掌握方程类型的判别,因为不同类型的方程有不同的解法,同一方程,可能属于多种不同的类型,则应选择较易求解的方法。对于一阶方程,通常可按可分离变量的方程,齐次方程、一阶线性方程、伯努利方程、全微分方程的顺...原创 2019-07-07 15:40:41 · 850 阅读 · 0 评论