图机器学习
麦地与诗人
读书不是为了雄辩和驳斥,也不是为了轻信和盲从,而是为了思考和权衡.
展开
-
相似性计算2---分类数据( Categorical Data)
分类数据( Categorical Data)1.Hamming distance2. Jaccard similarity3.Sørensen similarity4. Simple matching similarity5.Baroni-Urbani and Buser similarity原创 2020-03-31 14:36:17 · 733 阅读 · 0 评论 -
相似性计算1---数值型数据(Numerical Data)
含有N个样本的数据集,记作X={x1,x2,...,xn}X=\{ x_1,x_2,...,x_n\}X={x1,x2,...,xn}每个样本都用 ppp 个特征来描述,每个样本又表示为xi={xi1,xi2,...,xip}x_i=\{x_{i1},x_{i2},...,x_{ip}\}xi={xi1,xi2,...,xip}问题:怎样计算两个样本的距离?数值型数据(Nume...原创 2020-03-31 13:42:46 · 1073 阅读 · 0 评论 -
在复杂网络上应用机器学习方法的一般步骤
基于复杂网络的机器学习方法(machine learning methods based on complex networks)(1)收集基于向量的数据集并对其进行预处理(Gather the vector-based data set and preprocess it accordingly)数据的预处理一般包括:属性转换(attribute transformation):缩放(...原创 2020-03-25 10:57:53 · 1280 阅读 · 0 评论 -
图
图的一些基本定义(Graph Definitions)graph完全图(complete graph)零图(Null Graph)无向图(Undirected Graph)有向图(Directed Graph,digraph)加权图(Weighted Graph)二部图(Bipartite Graph)连通性(Connectivity)相邻顶点(Adjacent verti...原创 2020-03-21 09:55:20 · 3443 阅读 · 0 评论 -
cs224w笔记:slide14---influence
影响最大化(Influence Maximization)影响力最大化(influence maximization)研究在社交网络中如何选取少量结点(称为种子结点)使得通过影响力传播产生的影响力最大。影响力最大化可以应用到口碑营销、留言监控等涉及网络传播的方面,在学术界有广泛研究。但是传播过程是一个随机过程,由网络中每个边上的参数决定,而这些参数需要从传播数据中学习得到。在线影响力最大化(...原创 2020-03-12 14:31:29 · 328 阅读 · 0 评论 -
cs224w:slide11---PageRank(下)
1、PageRankPageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的,又称网页排名、谷歌左侧排名、PR,是Google公司所使用的对其搜索引擎搜索结果中的网页进行排名的一种算法。PageRank的结果来源于一种基于图论的数学算法。它将万维网上所有的网页视作节点(node),而将超链接视作边(edge)。每个节点的权重值表示对应的页面的重要度。通向该网页的超...原创 2020-03-09 17:32:08 · 331 阅读 · 0 评论 -
cs224w:slide11---PageRank(上)
Web这节主要讲Web问:从全球范围来看,网络是什么样子?网络可以表示成一个有向图:Node:网页(Web Page)Edge :超链接(hyperlink)给定节点 vvv,它能够到达哪些节点?又有哪些节点能够到达 vvv?In(v)={w∣w能够到达v}In(v)=\{ w|w 能够到达 v\}In(v)={w∣w能够到达v}Out(v)={w∣v能够到达w}Out(v)...原创 2020-03-09 13:34:46 · 377 阅读 · 0 评论 -
cs224w笔记:slide2(下)
已经介绍了网络的四个常用属性,分别是度、路径、聚类系数、连通性,现在我们来看看,现实世界中的网络在这些属性上的值是多少。1 即时通讯软件 MSN MessengerN=180N=180N=180 million peoplee=1.3e=1.3e=1.3 billion edge1.1 度分布横轴:度,度为2000的节点,度为4000的节点…纵轴:P(k)∗nP(k)*nP(...原创 2020-02-29 15:54:07 · 309 阅读 · 0 评论 -
cs224w笔记:slide2(上)
网络的属性用哪些指标去描述一个网络呢?度分布(Degree distribution):P(k)P(k)P(k)路径长度(Path length):hhh聚类系数(Clustering coefficient):CCC连通性(Connected components):sss我们将用无向图来分析这些属性,至于有向图,多数情况下可以从无向图自然而然地拓展到有向图。1. 度分布P(k...原创 2020-02-28 21:14:42 · 338 阅读 · 0 评论 -
cs224w:slide8(下)
1 Basics of deep learning for graphs原创 2020-03-07 17:17:30 · 226 阅读 · 0 评论 -
cs224w:slide8(上)
一、回顾:用一张图,直观地展示节点的2维嵌入:可是我们怎样选择这个映射函数f()f()f()呢?我们的目标是:在图中距离近的两个节点,映射后得到的向量也应该相近。上面这张图,展示了节点嵌入成向量的两个重要部分:Encoder:Similarity function上节我们介绍了Shallow Encoder,比较简单:问题:现代深度学习工具箱大多都是为简单的序列和网...原创 2020-03-07 12:51:52 · 294 阅读 · 0 评论 -
cs224w:slide 7---node representation
Graph Represent Learning,也叫Graph Embedding,是将网络中的一个个节点表示成一个个向量。怎样将图中的每一个Node表示成一个Vector呢?假设有一图 GGG:VVV是节点集合AAA是图的邻接矩阵节点自身的features 和网络包含的其余信息我们都没使用到主要有三步:定义一个可以将Graph变为Vector的编码器encoder定义一...原创 2020-03-06 16:35:35 · 646 阅读 · 0 评论 -
cs224笔记:slide3---motif
1 Network motifNetwork motif,“recurring, significant patterns of interconnections”.Network motif ,是重复出现的、重要的相互联系模式。怎样定义Network motif?模式(Pattern):反复出现的(Recurring):有重大意义的(Significant):为什么要定义N...原创 2020-03-01 14:33:29 · 499 阅读 · 0 评论 -
cs224w笔记:slide1---Introduction
Why networks/graphs?网络是描述相互作用实体的复杂系统的通用语言。Two types of networks/graphsNetworks (also known as Natural Graphs)社会(Society )是70多亿人的集合;通信系统(Communication systems)连接了各种电子设备;基因/蛋白质( genes/proteins)之间...原创 2020-02-27 16:39:25 · 245 阅读 · 0 评论