一、判断一个字符串是不是回文串
题目链接https://www.nowcoder.com/practice/df00c27320b24278b9c25f6bb1e2f3b8?tpId=69&&tqId=29674&rp=1&ru=/activity/oj&qru=/ta/hust-kaoyan/question-ranking
两个指向,一个从左往右,一个从右往左~
#include <iostream>
using namespace std;
int main(){
string s;
while(cin>>s){
int n = s.length();
int i=0,j=n-1;
bool res = true;
for(;i<n/2;){
if(s[i]!=s[j]){
res = false;
break;
}else{
i++;
j--;
}
}
if(res) cout<<"Yes!"<<endl;
else cout<<"No!"<<endl;
}
return 0;
}
二、最短的回文长度
题目链接
https://www.nowcoder.com/questionTerminal/4f10d29c0a25491ca7d351fceafee15a
题目描述:给定一个字符串,在其后面添加0个或者多个字符形成回文,求出最短的回文长度。
#include<iostream>
using namespace std;
bool isOK(string s){ // 判断字符串s是不是回文串
int n=s.length();
bool res = true;
int i=0,j=n-1;
for(;i<n/2;){
if(s[i]!=s[j]){
res = false;
break;
}
else{
i++;
j--;
}
}
return res;
}
int main(){
string s;
cin>>s;
int n=s.length();
int index;
for(int i=0;i<n;i++){
if(isOK(s.substr(i))) {
index = i;
break;
}
}
int res = n+index;
cout<<res;
return 0;
}
同样的题目,返回的不是最小长度,而是需要添加的字符串
https://www.nowcoder.com/practice/cfa3338372964151b19e7716e19987ac?tpId=49&&tqId=29361&rp=1&ru=/activity/oj&qru=/ta/2016test/question-ranking
三、构造回文
题目链接
https://www.nowcoder.com/questionTerminal/28c1dc06bc9b4afd957b01acdf046e69
给定一个字符串s,你可以从中删除一些字符,使得剩下的串是一个回文串。如何删除才能使得回文串最长呢?
输出需要删除的字符个数。
这个题本质考察的是最长公共子序列问题,字符串s和它的逆串的最长公共子序列长度
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int getMaxCommon(string s, string s1){
int n=s.length();
vector<vector<int>> f(n+1,vector<int>(n+1,0));
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(s[i]==s1[j])
f[i+1][j+1]=f[i][j]+1;
else
f[i+1][j+1]=max(f[i+1][j],f[i][j+1]);
}
}
return f[n][n];
}
int main(){
string s;
while(cin>>s){
int n = s.length();
string s1 = s;
reverse(s1.begin(),s1.end());
cout<<n-getMaxCommon(s,s1)<<endl;
}
return 0;
}
方法一:
暴力穷举,判断每个子串是不是回文的。其中找到每个子串的时间复杂度
O
(
n
2
)
O(n^2)
O(n2),判断是否为回文串的复杂度为
O
(
n
)
O(n)
O(n)。整个算法时间复杂度为
O
(
n
3
)
O(n^3)
O(n3)。
,
class Palindrome {
public:
int getLongestPalindrome(string A, int n) {
if(n<1) return 0;
int ans=1;
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
if(isOK(A.substr(i,j-i+1))){
ans = max(ans, j-i+1);
}
}
}
return ans;
}
private:
bool isOK(string s){
int n = s.length();
int i=0,j=n-1;
for(;i<n/2;){
if(s[i]!=s[j]){
return false;
}
i++;
j--;
}
return true;
}
};
方法二:
中心扩展法。遍历字符串的每个字符,然后左右扩展得到该位置的最长回文串,最后进行比较,得到最终结果。时间复杂度是
O
(
n
2
)
O(n^2)
O(n2)。
class Palindrome {
public:
int getLongestPalindrome(string A, int n) {
int ans = 0;
for(int i=0;i<n;i++){
ans = max(ans, getMaxCommon(A,n,i));
}
return ans;
}
private:
int getMaxCommon(string A, int n, int index){
int left = index-1, right = index+1;
while(right<n && A[right]==A[index])
right++;
while(left>=0 && right<n && A[left]==A[right]){
left--;
right++;
}
return right-left-1;
}
};
方法三:
动态规划法。f[i][j]=1表示 str[i…j]是回文子串。
class Palindrome {
public:
int getLongestPalindrome(string A, int n) {
vector<vector<int>> f(n,vector<int>(n,0));
int ans = 0;
for(int i=n-1;i>=0;i--){
for(int j=i;j<n;j++){
if(j-i<2) {
f[i][j]= (A[i]==A[j]);
}
else {
f[i][j] = (A[i]==A[j] && f[i+1][j-1]);
}
if(f[i][j]){
ans = max(ans, j-i+1);
}
}
}
return ans;
}
};
方法四: