4.4 求解同余方程

本文介绍了线性同余方程的求解方法,包括利用模逆元和贝祖定理,以及中国剩余定理在解决多个同余方程组中的应用。此外,还探讨了大整数的计算机算术、费马小定理、伪素数、卡米切尔数等数论概念,以及原根和离散对数在计算中的作用。
摘要由CSDN通过智能技术生成

4.4 求解同余方程

线性同余方程

a x ≡ b   ( m o d   m ) , 其 中 , m ∈ N + , a , b ∈ N , x 为 变 量 , 这 样 的 方 程 称 为 线 性 同 余 方 程 ax \equiv b\ (mod\ m),其中,m \in {N}^{+},a,b \in N,x为变量,这样的方程称为线性同余方程 axb (mod m)mN+a,bNx线

首先,这是个方程,所以x是变量,剩下的就是在确定a,b,m的值之后,确定x的可选值有哪些。解题思路是这样的:
g c d ( a , m ) = 1 , 且 a , m ∈ N , 则 必 然 存 在 一 个 数 : a ‾ , 称 为 a 模 m 的 逆 , 能 够 使 得 a ⋅ a ‾ ≡ 1 ( m o d   m ) 。 gcd(a,m)=1,且 a,m \in N,则必然存在一个数:\overline{a},称为a模m的逆,能够使得 a \cdot \overline{a} \equiv 1 (mod\ m)。 gcd(a,m)=1a,mNa,am使aa1(mod m)
这里先举一个现实的例子:
假 设 a = 3 , m = 7 , 则 − 2 ⋅ 3 ≡ 1 ( m o d   7 ) 假设 a=3,m=7,则 -2 \cdot 3 \equiv 1 (mod\ 7) a=3,m=7231(mod 7)
在上面的基础之上,再来看下面的推论,让我们先假定这个逆一定存在(接下来会证明这个值一定存在)。这个值如何帮助我们解决最开始的问题呢?
∵ a x ≡ b   ( m o d   m ) a ⋅ a ‾ ⋅ x ≡ b ⋅ a ‾   ( m o d   m ) a ⋅ a ‾ ⋅ x   m o d   m = ( ( a ⋅ a ‾   m o d   m ) × ( x   m o d   m ) )   m o d   m a ⋅ a ‾ ≡ 1   ( m o d   m ) x   m o d   m = b ⋅ a ‾ m o d    m ∴ x ≡ b ⋅ a ‾ ( m o d    m ) \because ax \equiv b\ (mod\ m) \\ a \cdot \overline{a} \cdot x \equiv b \cdot \overline{a}\ (mod\ m) \\ a \cdot \overline{a} \cdot x\ mod\ m = ((a \cdot \overline{a}\ mod\ m) \times (x\ mod\ m))\ mod\ m \\ a \cdot \overline{a} \equiv 1\ (mod\ m) \\ x\ mod\ m = b \cdot \overline{a} \mod m \\ \therefore x \equiv b \cdot \overline{a}(\mod m) axb (mod m)aaxba (mod m)aax mod m=((aa mod m)×(x mod m)) mod maa1 (mod m)x mod m=bamodmxba(modm)
这样就能获得了x的表达式。

那么问题就来了:

  1. a模m的逆一定存在吗?
  2. 如果存在,如何计算呢?

先是证明这个值一定存在。
∵ g c d ( a , m ) = 1 ∴ ∃ s , t , a s + t m = 1 ∴ ( a s + t m ) ≡ 1 ( m o d   m ) ( a s + t m ) ( m o d   m ) = ( ( a s   m o d   m ) + ( t m   m o d   m ) )   m o d   m ∵ t m   m o d   m = 0 ∴ ( a s ) ≡ 1 ( m o d   m ) , 这 里 s 就 是 作 为 a 的 逆 存 在 , 因 为 s 一 定 存 在 , 所 以 a ‾ 一 定 存 在 \because gcd(a,m)=1\\ \therefore \exists s,t,as+tm=1 \\ \therefore (as+tm) \equiv 1 (mod\ m) \\ (as+tm)(mod\ m)=((as\ mod\ m)+(tm\ mod\ m))\ mod\ m \\ \because tm\ mod\ m=0 \\ \therefore (as)\equiv 1 (mod\ m),这里s就是作为a的逆存在,因为s一定存在,所以 \overline{a} 一定存在 gcd(a,m)=1s,tas+tm=1(as+tm)1(mod m)(as+tm)(mod m)=((as mod m)+(tm mod m)) mod mtm mod m=0(as)1(mod m)sasa
接着就是这个值如何求,其实就是求贝祖系数

比如这里的
线 性 同 余 方 程 : 3 x ≡ 4   ( m o d    7 ) 的 解 是 什 么 ? 线性同余方程:3x \equiv 4\ (\mod 7) 的解是什么? 线3x4 (mod7)
解题过程:
∵ 5 ⋅ 3 − 2 ⋅ 7 = 1 ∴ x ≡ 5 ⋅ 4 ( m o d    7 ) ≡ 6 ( m o d    7 ) \because 5 \cdot 3 - 2 \cdot 7=1 \\ \therefore x \equiv 5 \cdot 4 (\mod 7) \equiv 6 (\mod 7) 5327=1x54(mod7)6(mod7)
当然,答案不止一个,因为
− 8 ≡ 6 ( m o d    7 ) , 所 以 上 面 也 可 以 写 成 x ≡ − 8 ( m o d    7 ) -8 \equiv 6(\mod 7),所以上面也可以写成 x \equiv -8 (\mod 7) 86(mod7)x

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值