解同余方程组

已知: *
N=a1x+b1;
N=a2
y+b2;
。。。。。
N=anz+bn;
求N;

解:
a1x+b1=a2y+b2; ==> a1x - a2y=b2-b1; (因为求x 所以a2前正负不影响结果);
令c=b2-b1;
通过扩展欧几里得算法对此式求解 求出x, 并得到gcd(a1,a2)=d;
如果c%d!=0,则此方程组无解;
如果有解则:
带入到 N=a1x+b1 中 ;
得到一个N的特解 : N0=a1
x+b1;
因为要同时满足式子: N=a1x+b1 N=a2y+b2;
所以 得到N的暂时的通解: N = N0 + (a1a2)/d * k; (k为正整数);
此通解变形得到和已知相同形式的式子: N=( (a1
a2)/d ) k + N0; 令a1= (a1a2)/d , b1=N0;
此时用此式和已知中下一个式子 联立 即可 求出 k 以及gcd,如此循环即可求解;

//例题   HDU 1573   最后求在已知范围内 此方程组有几个解 
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;


void look(int a,int b,int &d,int &x,int &y)
{
	if(!b)
	{
		x=1;y=0;d=a;
	}
	else
	{
		look(b,a%b,d,y,x);
		y-=(a/b)*x;
	}
}
int main()
{
	int n,m,a1,b1,a2,b2,flag=0,a[11],b[11],T,k,d,x,y,c;;
	scanf("%d",&T);
	while(T--)
	{
		cin>>n>>m;
	
		for(int i=0;i<m;i++)
			scanf("%d",&a[i]);
		for(int i=0;i<m;i++)
			scanf("%d",&b[i]);
		
		flag=0;
		
		a1=a[0];
		b1=b[0];
		
		for(int i=1;i<m;i++)
		{
			a2=a[i];
			b2=b[i];
			
			look(a1,a2,d,x,y);
			c=b2-b1;
			if(c%d)
			{
				flag=1;
				break;
			}
			int t=a2/d; 
			x=(x*(c/d)%t+t)%t;
			b1=a1*x+b1;
			a1=a1*a2/d;
		}
		if(flag||n<b1)
			printf("0\n");
		else
		{
			int ans=(n-b1)/a1+1;//+1是因为本身(b1)也为一个解 
			if(b1==0)
				ans--;//如果本身为0不满足题意正整数解  需要减掉 
			printf("%d\n",ans);
		}	
	}
	return 0;
}
### 使用MATLAB求方程组 对于线性方程组,可以采用中国剩定理(Chinese Remainder Theorem, CRT)来处理。当模数两两互质时,CRT提供了一种有效的方法来找到满足所有给定式的唯一。 下面展示了一个基于中国剩定理实现的MATLAB函数`chinese_remainder_theorem.m`用于求形如 \(x \equiv b_i (\text{mod } m_i)\) 的多个方程组成的系统: ```matlab function x = chinese_remainder_theorem(moduli, remainders) % 输入参数: % moduli - 式中的模数组成向量 [m_1,...,m_k] % remainders - 对应于各模数下的数值构成向量[b_1,...,b_k] n = length(moduli); M = prod(moduli); % 所有模数乘积 X = zeros(1, n); for i = 1 : n Mi = M / moduli(i); yi = inv_mod(Mi, moduli(i)); % 计算Mi关于mi的逆元 Xi = Mi * yi; X(i) = Xi .* remainders(i); end x = sum(X) %M; end function y = inv_mod(x, p) % 求x关于p的乘法逆元 [~, d] = gcd(x,p); if (d ~= 1) error('The modular inverse does not exist'); else [~, u, ~] = extgcd(x, p); y = mod(u, p); end end function [g, a, b] = extgcd(a0, b0) % 实现扩展欧几里得算法 r = [a0, b0]; s = [1, 0]; t = [0, 1]; while r(end)~=0 q = floor(r(end-1)/r(end)); new_r = r(end-1)-q*r(end); push!(r,new_r); new_s = s(end-1)-q*s(end); push!(s,new_s); new_t = t(end-1)-q*t(end); push!(t,new_t); end g=r(end-1); a=s(end-1); b=t(end-1); end ``` 此代码定义了三个主要部分:主函数 `chinese_remainder_theorem` 来计算最终的结果;辅助函数 `inv_mod` 用来获取两个整数之间的模反元素;以及另一个帮助函数 `extgcd` 应用了扩展的最大公约数算法以支持上述操作[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值