AcWing 796. 子矩阵的和
1、题目(来源于AcWing):
输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1, y1, x2, y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
输入格式
第一行包含三个整数n,m,q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含四个整数x1, y1, x2, y2,表示一组询问。
输出格式
共q行,每行输出一个询问的结果。
数据范围
1≤n,m≤1000,
1≤q≤200000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例:
17
27
21
2、基本思想:
利用二维数组前缀和s[i][j] = s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1] + a[i][j] 先初始化前缀和数组 s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1] 再累加。具体如下图所示:
3、步骤:
①初始化前缀和数组
②询问
4、C++代码如下(该代码引用AcWing网站的代码):
#include <iostream>
using namespace std;
const int N = 1010;
int n, m, q;
int a[N][N], s[N][N];
int main()
{
scanf("%d%d%d", &n, &m, &q);//因为数据规模比较大所以建议用scanf
for (int i = 1; i <= n; i ++ )
{
for (int j = 1; j <= m; j ++ ) scanf("%d", &a[i][j]);
}
for (int i = 1; i <= n; i ++ )
{
for (int j = 1; j <= m; j ++ ) s[i][j] = s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1] + a[i][j];
}//初始化前缀和数组
while (q--)
{
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);
}//询问
return 0;
}//该代码引用AcWing网站的代码
注意事项:
①本题数据规模比较大,建议输入都用scanf
②二维数组下标都从1开始,省去多余的数组防止下标出现负数