之前一直想着写博客,但总是用各种理由来推脱,今天我逼迫自己写一篇博客,一道简单的前缀和的例题。之后我会用博客记录我的算法笔记,找到正确学习算法的路数,不断巩固提升自己。
原题链接https://www.acwing.com/problem/content/798/
题目描述:
输入一个 n行 m列的整数矩阵,再输入 q 个询问,每个询问包含四个整数 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。对于每个询问输出子矩阵中所有数的和。
输入格式
第一行包含三个整数 n,m,q。
接下来 n行,每行包含 m 个整数,表示整数矩阵。
接下来 q 行,每行包含四个整数 x1,y1,x2,y2表示一组询问
输出格式
共 q行,每行输出一个询问的结果。
数据范围
1≤n,m≤1000,
1≤q≤200000
1≤x1≤x2≤n
1≤y1≤y2≤m
−1000≤矩阵内元素的值≤1000
代码如下
#include<cstdio>
using namespace std;
const int N = 1010; // 一定要注意不能取太大,会溢出报错
int a[N][N], s[N][N];
int n, m, q, x1, y1, x2, y2, ans;
int main(){
scanf("%d%d%d", &n, &m, &q);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d", &a[i][j]);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + a[i][j];
}
}
while(q--){
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
ans = s[x2][y2] - s[x1-1][y2] - s[x2][y1-1] + s[x1-1][y1-1];
printf("%d\n", ans);
}
return 0;
}
这道题就是 如何求一个二维前缀和:简单的想,给你组数,让你求任意从中截取一块的和。
怎么做呢:先把这组数用一个二维数组存起来,然后用另一个二维数组记录相应坐标的数及这个坐标之前加起来的总和(每一个坐标所存的数是之前的总和)即是
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + a[i][j];
这段代码的意义。
(这两张图转自番茄酱https://www.acwing.com/solution/content/3797/)
这张图很直观清晰的解释了这段代码。记得要减去s[i-1][j-1],因为重复加了。最后把缺口加上就是a[i][j]
这段代码则是求任意一块的前缀和。
ans = s[x2][y2] - s[x1-1][y2] - s[x2][y1-1] + s[x1-1][y1-1];
注意最后加上s[x1-1][y1-1],因为这一块被重复减去了
对自己:我确实是浪费太多时间,总给自己逃避,找到无数借口,但我想,我总可以捐弃前嫌痛改前非吧,过去就让它过去吧,我一定要一定要好好学习,我一定要一定要学好算法。
赘余的话我不再说,只希望我加油,共勉。