自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 资源 (2)
  • 收藏
  • 关注

原创 差分进化算法(DE)

DE与传统的进化算法相比,利用随机选择的不同个体生成的比例差分矢量对当前代个体进行扰动,因此无需单独使用概率分布来生成个体。存在类似于进化算法的计算步骤,包括变异、交叉和选择三种操作。首先在整个搜索空间随机生成N个初始种群个体rand(0,1)是[0,1]上服从均匀分布的随机数。1 变异操作变异个体由下式产生xp1,xp2,xp3为当前种群中随机选择的三个不相同参数矢量,并且p1≠p1≠p3≠i,F为[0,1]自己的缩放比例因子。变异操作相当于其中两个Xp2和Xp3的缩放差异信息,加在另一

2021-09-26 16:51:44 933

原创 正则化方法

正则化的目的:防止过拟合正则化中我们将保留所有的特征变量,但是会减小特征变量的数量级(参数数值大小)L1正则化和L2正则化:可以看做是损失函数的惩罚项。所谓惩罚就是对于损失函数中的某些参数做一些限制。L1正则化的模板叫LASSO回归 LASSO(套索算法)L2正则化的模板叫做Ridge回归(岭回归)L1正则化是指权值向量W中各个元素的绝对值之和(相当于1范数)L2正则化是指权值向量W中的各个元素的平方和再求平方根(相当于求2范数)L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特

2021-08-24 11:15:03 297

原创 Hausdorff距离(豪斯多夫距离)

Hausdorff距离量度度量空间中真子集之间的距离。所谓度量空间,也就是一个集合,其中任意元素之间的距离可定义;真子集就简单理解成一组有限(可以是无限)数目的元素(点)集合。因此,Hausdorff距离可以理解成一个点集中的点到另一个点集的最短距离的最大值。定义如下:其中sup(supremum)和inf(infimum)分别表示上确界和下确界。Hausdorff距离是描述两组点集之间相似程度的一种量度,它是两个点集之间距离的一种定义形式:假设有两组集合A={a1,…,ap},B={b1,…,b

2021-08-20 09:19:15 6962

原创 隶属函数(membership function)

隶属函数(membership function),是用于表征模糊集合的数学工具。为了描述元素u对U上的一个模糊集合的隶属关系,由于这种关系的不分明性,它将用从区间[0,1]中所取的数值代替0,1这两值来描述,表示元素属于某模糊集合的“真实程度”。举例说明:因为隶属函数是属于模糊集合的真实程度,隶属函数数值是在0到1之间。假设高个子为一个集合,身高185的隶属度为0.9,身高180的隶属度为0.8.针对集合 X ,集合 X上的隶属函数是将集合 X 映射到单位实数区间 [0,1]的函数。X集合上的隶属

2021-08-01 10:33:10 7300

原创 统计检测(statistical tests)

统计检验亦称“假设检验”。根据抽样结果,在一定可靠性程度上对一个或多个总体分布的原假设作出拒绝还是不拒绝(予以接受)结论的程序。决定常取决于样本统计量的数值与所假设的总体参数是否有显著差异。这时称差异显著性检验。检验的推理逻辑为具有概率性质的反证法。例如,在参数假设检验中,当对总体分布的参数作出原假设 H0 后,先承认总体与原假设相同, 然后根据样本计算一个统计量,并求出该统计量的分布,再给定一个小概率(一般为 0.05,0.01 等,视情况而定),确定拒绝原假设 H0 的区域(拒绝域)...

2021-07-29 09:11:58 2245

原创 DET(距离评价技术)

DET是一种基于类内距离的特征评价技术。评价原则可以描述为同一类内部特征距离最小,两个不同类之间的距离最大。符合这一原则的特征被认为是敏感特征。

2021-07-28 10:24:53 867 1

原创 残差平方和(RSS)、均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)、标准差(SD)

残差平方和(RSS)统计学上把数据点与它在回归直线上相应位置的差异称为残差,把每个残差平方之后加起来 称为残差平方和(相当于实际值与预测值之间差的平方之和)。它表示随机误差的效应。一组数据的残差平方和越小,其拟合程度越好。残差平方和是在线性模型中衡量模型拟合程度的一个量,用连续曲线近似地刻画或比拟平面上离散点组,以表示坐标之间函数关系的一种数据处理方法。均方误差(MSE)均方误差是指参数估计值与参数真值之差平方的期望值在样本量一定时,评价一个点估计的好坏标准使用的指标总是点估计与参数真值 的距离的

2021-07-02 09:28:30 50042

原创 弱监督学习的介绍及应用

1 弱监督学习的简单介绍弱监督学习是机器学习领域中的一个分支,与传统的监督学习相比,其使用有限的、含有噪声的或者标注不准确的数据来进行模型参数的训练。2 弱监督学习的分类1.不完全监督2.不确切监督3.不准确监督2.1不完全监督指的是训练数据只有部分是带有标签的,同时大量数据是没有被标注过的。这是最常见的由于标注成本过高而导致无法获得完全的强监督信号的情况,例如,聘请领域专家直接给大量数据添加标签的成本就相当高。问题可以被形式化表达为:在训练数据为 D = {(x_1, y_1), …, (

2021-06-01 09:21:25 6597

原创 电力网络的分布式加权最小二乘估计

摘要:提出了一种全分布式最优参数估计方案,并应用于多区域互联电力系统。在该方案中,每个区域基于低维局部和边界测量以及来自其邻居的边界参数估计来执行其自身的局部参数估计。目的是提出一个完全分布式的估计方案,该方案结合了所有期望的特征。为此,我们为每个控制中心提出了一种新的分布式估计器,称为局部估计器,它只需要局部(自己的区域)和边界信息。每个局部估计器提供其自身区域的参数估计,并且通过仅交换少量的边界估计数据来完成与相邻区域的连接。不同区域之间的物理联系(连线)通常是低维的,在一个区域进行的大多数测量不受

2021-06-01 08:50:29 567

原创 python 中出现 unindent does not match any outer indentation level错误

在程序运行时结果报错unindent does not match any outer indentation level一开始以为是代码错误后来仔细检查了错误发现不是代码错误,发现是一直不起眼的注释的缘故。注释应该和下面的一行代码对齐的。解决方法按CTRL+ALT+L进行代码格式化就能避免这种错误...

2021-04-16 22:30:09 1406

原创 python的初始化、__init__方法的使用、self的作用

1 python中对于一个对象我们通常会使用初始化这个方法。对象一般是是由类创造的具体存在。所以初始化一般指的是一个具体的东西而不是我们定义的类本身。那什么叫初始化了?初始化一般是将不确定的变为确定的,把变量变为一个默认值。就相当于给一个变量赋了一个具体的值。2 __init__方法的使用例如下创建一个Dog类class Dogdef init(self, name, age)“初始化属性name、age”self.name=nameself.age=agemy_dog=Dog(‘wil

2021-04-13 11:40:59 1456

原创 Python中Django视图(view)里的request作用

一般在urls.py文件中的urlpatterns的路径在中包含了视图函数的路径。根据这个路径找到views.py文件中的相应的view页面。视图函数接受请求中的信息,准备好生成页面所需的数据。每个视图函数都使用HttpRequest对象作为第一参数,并且通常称为request(这就是request的由来)。该对象包含关于请求的元数据,将这个HttpRequest对象作为第一个参数传递给视图函数,每个视图负责返回一个HttpRequest对象。总体来说就是一个视图函数名会产生一个request对象(

2021-04-13 10:51:46 939

原创 Python——Django-admin.py文件

一般我们在pycharm中创建应用程序(name_app)时会在该应用程序自动生成一个admin.py文件。admin.py被称为后台管理文件,当我们需要在后台管理系统中添加需要的模块时,就需要先在admin.py文件中注册该模块。1 首先打开admin.py文件2 注册我们需要向后台管理系统添加的模块,例如在其中添加模块Topic、Entry.models前面的 . 是让Django在admin.py所在的应用程序中寻找models.py文件。admin.site.register()让Dja

2021-04-11 10:44:32 1810

原创 VS2010中出现的 opencv_core2410d.dll”,Cannot find or open the PDB file 解决方法

VS2010中出现的 opencv_core2410d.dll”,Cannot find or open the PDB file解决方法方法一:1.若是C++文件,在main程序里面,在return(0)之前添加:system(“pause”);2.若是C文件,首先在程序头添加头文件:#include"stdlib.h";然后在在main程序里面,在return(0)之前添加:system(“pause”)。方法二:1.右键单击当前工程-属性2.选择配置属性-链接器-系统3.更改系统选项中

2021-04-10 16:27:38 659

原创 概率神经网络

核函数概率密度估计 神经网络

2021-01-20 09:34:43 8820 1

原创 数字通信在故障诊断方面的应用

故障诊断系统的简单介绍故障诊断系统在不同的发展阶段‚随着设备的规模、组织结果和功能各不相同‚与它们相适应的测试设备和诊断技术也各不相同‚主要发展经历了以下几个阶段1 人工离线检测和诊断方式设备维护人员或工程技术人员利用常规测试仪表对设备进行监测和分析‚并根据自己的经验对设备的状态和运行趋势等做出判断。2 单机集中式在线监测和诊断系统这种诊断系统主要通过一台计算机来完成数据采集、处理和故障诊断。这类系统集诸多功能于一体‚维护方便‚主要用于主体设备的监测诊断。但是这类系统所能监测的设备有限‚系统功能有

2020-12-20 11:38:29 608 1

DCT变换数字水印技术.txt

可以直接运行 可以进行不同的攻击

2021-06-01

python从入门到实践Django项目

解决项目中所有主题的页面无法显示的问题

2021-04-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除