Hausdorff距离(豪斯多夫距离)

Hausdorff距离是度量空间中用于衡量两个点集之间最大不匹配程度的量度。它定义为点集中最远点到另一点集最近点的距离的最大值。在计算几何、图像处理和模式识别等领域,Hausdorff距离被广泛用于比较和匹配形状。这个概念涉及到上确界和下确界的计算,并且与欧几里得距离范式有关。
摘要由CSDN通过智能技术生成

Hausdorff距离量度度量空间中真子集之间的距离。所谓度量空间,也就是一个集合,其中任意元素之间的距离可定义;真子集就简单理解成一组有限(可以是无限)数目的元素(点)集合。因此,Hausdorff距离可以理解成一个点集中的点到另一个点集的最短距离的最大值。

在这里插入图片描述
定义如下:
在这里插入图片描述
其中sup(supremum)和inf(infimum)分别表示上确界和下确界。
Hausdorff距离是描述两组点集之间相似程度的一种量度,它是两个点集之间距离的一种定义形式:假设有两组集合A={a1,…,ap},B={b1,…,bq},则这两个点集合之间的Hausdorff距离定义为

H(A,B)=max(h(A,B),h(B,A)) (1)

其中,

h(A,B)=max(a∈A)min(b∈B)‖a-b‖ (2)

h(B,A)=max(b∈B)min(a∈A)‖b-a‖ (3)

‖·‖是点集A和B点集间的距离范式(如:L2或Euclidean距离).

这里,式(1)称为双向Hausdorff距离,是Hausdorff距离的最基本形式;式(2)中的h(A,B)和h(B,A)分别称为从A集合到B集合和从B集合到A集合的单向Hausdorff距离.即h(A,B)实际上首先对点集A中的每个点ai到距离此点ai最近的B集合中点bj之间的距离‖ai-bj‖进行排序,然后取该距离中的最大值作为h(A,B)的值.h(B,A)同理可得.

由式(1)知,双向Hausdorff距离H(A,B)是单向距离h(A,B)和h(B,A)两者中的较大者,它度量了两个点集间的最大不匹配程度.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值