【jzoj】2855:【NOIP10普及组】导弹拦截c++

题目描述
经过11年的韬光养晦,某国研发出了一种新的导弹拦截系统,凡是与它的距离不超过其工作半径的导弹都能够被它成功拦截。当工作半径为 0时,则能够拦截与它位置恰好相同的导弹。但该导弹拦截系统也存在这样的缺陷:每套系统每天只能设定一次工作半径。而当天的使用代价,就是所有系统工作半径的平方和。

某天,雷达捕捉到敌国的导弹来袭。由于该系统尚处于试验阶段,所以只有两套系统投入工作。如果现在的要求是拦截所有的导弹,请计算这一天的最小使用代价。

输入格式
第一行包含 44个整数x1​、y1​、x2​、y2​,每两个整数之间用一个空格隔开,表示这两套导弹拦截系统的坐标分别为(x1​,y1​)、(x2​,y2​)。 第二行包含1 个整数N,表示有 N颗导弹。接下来N行,每行两个整数 x,y,中间用 一个空格隔开,表示一颗导弹的坐标(x,y)。不同导弹的坐标可能相同。

输出格式
一个整数,即当天的最小使用代价。

输入输出样例
输入 

0 0 10 0
2
-3 3
10 0
输出 

18
输入 

0 0 6 0
5
-4 -2
-2 3
4 0
6 -2
9 1
输出 

30
说明/提示
两个点(x1​,y1​)、(x2​,y2​)之间距离的平方是(x1​−x2​)²+(y1​−y2​)²。

两套系统工作半径r1​,r2​的平方和,是指 r1​,r2​ 分别取平方后再求和,即r1​²+r2²​。

【样例 1说明】

样例1中要拦截所有导弹,在满足最小使用代价的前提下,两套系统工作半径的平方分别为18和0。

【样例2 说明】

样例2中的导弹拦截系统和导弹所在的位置如下图所示。要拦截所有导弹,在满足最小使用代价的前提下,两套系统工作半径的平方分别为20 和10。

【数据范围】

对于10%的数据,N = 1

对于20%的数据,1≤N≤2

对于40%的数据,1≤N≤100

对于70%的数据,1≤N≤1000

对于100%的数据,1≤N≤100000,且所有坐标分量的绝对值都不超过1000。

我们可以知道

如果有两个导弹分别距离装置x1,x2(x1<x2)

显然此装备设置为x2便足以拦截此导弹

如果有n个也是如此

那么我们需要知道两个将装备拦截的导弹中距离最远的一个足以

那么就需要枚举

但是O(n^2)の枚举必定要T

那么我们需要线性枚举

但我们如果知道一个系统能拦截的导弹

那么剩下没拦截的导弹便有另一系统(ko na wo Dio da!!!)负责

那么我们可以线性枚举了

warm tip:

1.如果在枚举前预先排序的话会更快的说

2.看完要记得点赞哦

本代码无坑请放心食用:

#include<bits/stdc++.h>
using namespace std;
inline int dist(int x1,int y1,int x2,int y2){return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);}
//计算两点距离的函数 
struct Jack{
	int l1,l2;
}f[110000];
inline bool cmp(const Jack &a,const Jack &b){return a.l1<b.l1;}
//相对于一号系统进行排序,将大的放到后面去 
int main( ){
	int n,i,j,k,x1,x2,y1,y2,a,b;
	std::ios::sync_with_stdio(false);
	cin>>x1>>y1>>x2>>y2;
	cin>>n;
	for(i=1;i<=n;i++){
		cin>>a>>b;
		f[i].l1=dist(x1,y1,a,b);
		f[i].l2=dist(x2,y2,a,b);
	}
	sort(f+1,f+n+1,cmp);
	int ans=f[n].l1,hei=-1;
	//因为将一号系统设置为离它最远的一个便已经能拦截所有导弹了 
	for(i=n-1;i>=1;i--){
		hei=max(hei,f[i+1].l2);
		ans=min(ans,hei+f[i].l1);
	}
	cout<<ans<<endl;
	return 0; 
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值