题目描述
小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 111 到 NNN 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 iii 的海拔高度为 HiHiHi,城市 iii 和城市 jjj 之间的距离 di,jd_{i, j}di,j 恰好是这两个城市海拔高度之差的绝对值,即 di,j=∣Hi−Hj∣d_{i, j} = |H_i - H_j|di,j=∣Hi−Hj∣。
旅行过程中,小 A 和小 B 轮流开车,第一天小 A 开车,之后每天轮换一次。他们计划选择一个城市 SSS 作为起点,一直向东行驶,并且最多行驶 XXX 公里就结束旅行。小 A 和小 B 的驾驶风格不同,小 B 总是沿着前进方向选择一个最近的城市作为目的地,而小 A 总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出 XXX 公里,他们就会结束旅行。
在启程之前,小 A 想知道两个问题:
- 对于一个给定的 X=X0X = X_0X=X0,从哪一个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值最小(如果小 B 的行驶路程为 000,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值都最小,则输出海拔最高的那个城市。
- 对任意给定的 X=XiX = X_iX=Xi 和出发城市 SiS_iSi,小 A 开车行驶的路程总数以及小 B 行驶的路程总数。
输入格式
第一行包含一个整数 NNN,表示城市的数目。
第二行有 NNN 个整数,每两个整数之间用一个空格隔开,依次表示城市 111 到城市 NNN 的海拔高度,即 H1,H2,…,Hn,且每个 HiH_iHi 都是不同的。
第三行包含一个整数 X0X_0X0。
第四行为一个整数 MMM,表示给定 MMM 组 SiS_iSi 和 XiX_iXi。
接下来的 MMM 行,每行包含 222 个整数 SiS_iSi 和 XiX_iXi,表示从城市 SiS_iSi 出发,最多行驶 XiX_iXi 公里。
输出格式
第一行包含一个整数 S0S_0S0,表示对于给定的 X0X_0X0,从编号为 S0S_0S0 的城市出发,小 AAA 开车行驶的路程总数与小 B 行驶的路程总数的比值最小。
接下来的 MMM 行,每行包含 222 个整数,之间用一个空格隔开,依次表示在给定的 SiS_iSi 和 XiX_iXi 下小 A 行驶的里程总数和小 B 行驶的里程总数。
样例
样例输入 1
4
2 3 1 4
3
4
1 3
2 3
3 3
4 3
样例输出 1
1
1 1
2 0
0 0
0 0
样例 1 解释
各个城市的海拔高度以及两个城市间的距离如上图所示。
- 如果从城市 1 出发,可以到达的城市为 2,3,4,这几个城市与城市 1 的距离分别为 1,1,2,但是由于城市 3 的海拔高度低于城市 2,所以我们认为城市 3 离城市 1 最近,城市 2 离城市 1 第二近,所以小 A 会走到城市 2。到达城市 2 后,前面可以到达的城市为 3,4,这两个城市与城市 2 的距离分别为 2,1,所以城市 4 离城市 2 最近,因此小 B 会走到城市 4。到达城市 4 后,前面已没有可到达的城市,所以旅行结束。
- 如果从城市 2 出发,可以到达的城市为 3,4,这两个城市与城市 2 的距离分别为 2,1,由于城市 3 离城市 2 第二近,所以小 A 会走到城市 3。到达城市 3 后,前面尚未旅行的城市为 4,所以城市 4 离城市 3 最近,但是如果要到达城市 4,则总路程为 2+3=5>32+3=5>32+3=5>3,所以小 B 会直接在城市 3 结束旅行。
- 如果从城市 3 出发,可以到达的城市为 4,由于没有离城市 3 第二近的城市,因此旅行还未开始就结束了。
- 如果从城市 4 出发,没有可以到达的城市,因此旅行还未开始就结束了。
样例输入 2
10
4 5 6 1 2 3 7 8 9 10
7
10
1 7
2 7
3 7
4 7
5 7
6 7
7 7
8 7
9 7
10 7
样例输出 2
2
3 2
2 4
2 1
2 4
5 1
5 1
2 1
2 0
0 0
0 0
样例 2 解释
当 X=7X = 7X=7 时,
- 如果从城市 1 出发,则路线为 1 → 2 → 3 → 8 → 9,小 A 走的距离为 1+2=31+2=31+2=3,小 B 走的距离为 1+1=21+1=21+1=2。(在城市 1 时,距离小 A 最近的城市是 2 和 6,但是城市 2 的海拔更高,视为与城市 1 第二近的城市,所以小 A 最终选择城市 2;走到 9 后,小 A 只有城市 10 可以走,没有第 2 选择可以选,所以没法做出选择,结束旅行)
- 如果从城市 2 出发,则路线为 2 → 6 → 7,小 A 和小 B 走的距离分别为 2,4。
- 如果从城市 3 出发,则路线为 3 → 8 → 9,小 A 和小 B 走的距离分别为 2,1。
- 如果从城市 4 出发,则路线为 4 → 6 → 7,小 A 和小 B 走的距离分别为 2,4。
- 如果从城市 5 出发,则路线为 5 → 7 → 8,小 A 和小 B 走的距离分别为 5,1。
- 如果从城市 6 出发,则路线为 6 → 8 → 9,小 A 和小 B 走的距离分别为 5,1。
- 如果从城市 7 出发,则路线为 7 → 9 → 10,小 A 和小 B 走的距离分别为 2,1。
- 如果从城市 8 出发,则路线为 8 → 10,小 A 和小 B 走的距离分别为 2,0。
- 如果从城市 9 出发,则路线为 9,小 A 和小 B 走的距离分别为 0,0(旅行一开始就结束了)。
- 如果从城市 10 出发,则路线为 10,小 A 和小 B 走的距离分别为 0,0。
从城市 2 或者城市 4 出发小 A 行驶的路程总数与小 B 行驶的路程总数的比值都最小,但是城市 2 的海拔更高,所以输出第一行为 2。
数据范围与提示
对于 30% 的数据,有 1≤N≤201 \leq N \leq 201≤N≤20,1≤M≤201 \leq M \leq 201≤M≤20;
对于 40% 的数据,有 1≤N≤1001 \leq N \leq 1001≤N≤100,1≤M≤1001 \leq M \leq 1001≤M≤100;
对于 50% 的数据,有 1≤N≤1001 \leq N \leq 1001≤N≤100,1≤M≤10001 \leq M \leq 1\,0001≤M≤1000;
对于 70% 的数据,有 1≤N≤10001 \leq N \leq 1\,0001≤N≤1000,1≤M≤100001 \leq M \leq 10\,0001≤M≤10000;
对于 100% 的数据,有 1≤N≤1000001 \leq N \leq 100\,0001≤N≤100000,1≤M≤100001 \leq M \leq 10\,0001≤M≤10000,∣Hi∣≤109|H_i| \leq 10^9∣Hi∣≤109,0≤Xi≤109∀i≥00 \leq X_i \leq 10^9\,\,\forall i \geq 00≤Xi≤109∀i≥0,1≤Si≤N∀i≥11 \leq S_i \leq N\,\,\forall i \geq 11≤Si≤N∀i≥1,数据保证 HiH_iHi 各不相同。
作为联赛第3题算法是裸的,但处理巨烦
第一步:可以看出和决策先后没有关系,每一种走法都是唯一的
第二步:预处理出小A和小B的每种走法,顺便记权值
这步巨烦
好几种处理方法:set,splay,treap(ORZ)
并查集,链表(平民化)
我这弱鸡只能写链表,写的心态爆炸
第3步:用ST表维护小A先走,再小B走,再小A走,再小B走,……,最后再小B走
S[i][j]表示从i号节点小A和小B各走2^j步走到的节点
SW[i][j]表示—…………………………………的权值
第4步,求出答案后,还要尝试一下小A还能不能再走,如果能就走
GG啦
我搞不懂GG为啥输的人要发?
#include<cstdio>
#include<algorithm>
const int INF=1e9+1;
#include<cmath>
#define ll long long
using namespace std;
inline int read()
{
int ret=0; bool f=0;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-') f=1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
ret=(ret<<1)+(ret<<3)+ch-'0',ch=getchar();
return f?-ret:ret;
}
int n,X;
const int N=1e5+5;
int b[N],f[N],nxt[N],pre[N];
int A[N],B[N],AW[N],BW[N],S[N][20],SW[N][20],SA[N][20],SB[N][20];
struct NA{
int id,x;
}a[N];
bool cmp(NA i,NA j)
{
return i.x<j.x;
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i].x=read(),a[i].id=i,nxt[i]=i+1,pre[i]=i-1;
nxt[0]=nxt[n]=0,pre[1]=0;
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++)
b[a[i].id]=i;
for(int i=1;i<=n;i++)
{
int u=pre[b[i]],v=nxt[b[i]];
if(!u&&!v) break;
if(v&&(!u||abs(a[u].x-a[b[i]].x)>abs(a[v].x-a[b[i]].x)))
B[i]=a[v].id,BW[i]=abs(a[v].x-a[b[i]].x);
else B[i]=a[u].id,BW[i]=abs(a[u].x-a[b[i]].x);
if(pre[b[i]]) nxt[pre[b[i]]]=nxt[b[i]];
if(nxt[b[i]]) pre[nxt[b[i]]]=pre[b[i]];
}
for(int i=1;i<=n;i++)
nxt[i]=i+1,pre[i]=i-1;
nxt[n]=nxt[0]=0,pre[1]=pre[0]=0;
for(int i=1;i<=n;i++)
{
if(!pre[b[i]]&&!nxt[b[i]]) continue;
if(!pre[b[i]]&&nxt[nxt[b[i]]]||pre[b[i]]&&nxt[nxt[b[i]]]&&abs(a[pre[b[i]]].x-a[b[i]].x)>abs(a[nxt[nxt[b[i]]]].x-a[b[i]].x))
A[i]=a[nxt[nxt[b[i]]]].id,AW[i]=abs(a[nxt[nxt[b[i]]]].x-a[b[i]].x);
else if(!nxt[b[i]]&&pre[pre[b[i]]]||nxt[b[i]]&&pre[pre[b[i]]]&&abs(a[nxt[b[i]]].x-a[b[i]].x)>=abs(a[pre[pre[b[i]]]].x-a[b[i]].x))
A[i]=a[pre[pre[b[i]]]].id,AW[i]=abs(a[pre[pre[b[i]]]].x-a[b[i]].x);
else if(nxt[b[i]]&&pre[b[i]])
{
if(abs(a[nxt[b[i]]].x-a[b[i]].x)<abs(a[pre[b[i]]].x-a[b[i]].x))
A[i]=a[pre[b[i]]].id,AW[i]=abs(a[pre[b[i]]].x-a[b[i]].x);
else A[i]=a[nxt[b[i]]].id,AW[i]=abs(a[nxt[b[i]]].x-a[b[i]].x);
}
if(pre[b[i]]) nxt[pre[b[i]]]=nxt[b[i]];
if(nxt[b[i]]) pre[nxt[b[i]]]=pre[b[i]];
}
for(int i=1;i<=n;i++)
if(A[i]&&B[A[i]])
S[i][0]=B[A[i]],
SW[i][0]=min(INF,AW[i]+BW[A[i]]),
SB[i][0]=min(INF,BW[A[i]]),
SA[i][0]=min(INF,AW[i]);
for(int j=1;j<20;j++)
for(int i=1;i<=n;i++)
if(S[i][j-1]&&S[S[i][j-1]][j-1])
S[i][j]=S[S[i][j-1]][j-1],
SW[i][j]=min(INF,SW[i][j-1]+SW[S[i][j-1]][j-1]),
SB[i][j]=min(INF,SB[i][j-1]+SB[S[i][j-1]][j-1]),
SA[i][j]=min(INF,SA[i][j-1]+SA[S[i][j-1]][j-1]);
X=read();
int ans1=INF+1,ans2=0;
int t=0;
for(int i=1;i<=n;i++)
{
int sA=0,sB=0,s=0;
int u=i;
for(int j=19;j>=0;j--)
if(S[u][j])
{
if((ll)s+SW[u][j]<=X)
s+=SW[u][j],sA+=SA[u][j],sB+=SB[u][j],
u=S[u][j];
}
if(A[u]&&s+AW[u]<=X) sA+=AW[u];
if((ll)ans1*sB>(ll)sA*ans2)
ans1=sA,ans2=sB,t=i;
}
printf("%d\n",t);
t=read();
while(t--)
{
int u=read(),s=0,sA=0,sB=0; X=read();
for(int j=19;j>=0;j--)
if(S[u][j])
{
if((ll)s+SW[u][j]<=X)
s+=SW[u][j],sA+=SA[u][j],sB+=SB[u][j],
u=S[u][j];
}
if(A[u]&&s+AW[u]<=X) sA+=AW[u];
printf("%d %d\n",sA,sB);
}
return 0;
}