LOJ #2604. 「NOIP2012」开车旅行

题目描述

小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 111 到 NNN 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 iii 的海拔高度为 HiHiHi,城市 iii 和城市 jjj 之间的距离 di,jd_{i, j}d​i,j​​ 恰好是这两个城市海拔高度之差的绝对值,即 di,j=∣Hi−Hj∣d_{i, j} = |H_i - H_j|d​i,j​​=∣H​i​​−H​j​​∣。

旅行过程中,小 A 和小 B 轮流开车,第一天小 A 开车,之后每天轮换一次。他们计划选择一个城市 SSS 作为起点,一直向东行驶,并且最多行驶 XXX 公里就结束旅行。小 A 和小 B 的驾驶风格不同,小 B 总是沿着前进方向选择一个最近的城市作为目的地,而小 A 总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出 XXX 公里,他们就会结束旅行。

在启程之前,小 A 想知道两个问题:

  1. 对于一个给定的 X=X0X = X_0X=X​0​​,从哪一个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值最小(如果小 B 的行驶路程为 000,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值都最小,则输出海拔最高的那个城市。
  2. 对任意给定的 X=XiX = X_iX=X​i​​ 和出发城市 SiS_iS​i​​,小 A 开车行驶的路程总数以及小 B 行驶的路程总数。

输入格式

第一行包含一个整数 NNN,表示城市的数目。

第二行有 NNN 个整数,每两个整数之间用一个空格隔开,依次表示城市 111 到城市 NNN 的海拔高度,即 H1,H2,…,Hn,且每个 HiH_iH​i​​ 都是不同的。

第三行包含一个整数 X0X_0X​0​​。

第四行为一个整数 MMM,表示给定 MMM 组 SiS_iS​i​​ 和 XiX_iX​i​​。

接下来的 MMM 行,每行包含 222 个整数 SiS_iS​i​​ 和 XiX_iX​i​​,表示从城市 SiS_iS​i​​ 出发,最多行驶 XiX_iX​i​​ 公里。

输出格式

第一行包含一个整数 S0S_0S​0​​,表示对于给定的 X0X_0X​0​​,从编号为 S0S_0S​0​​ 的城市出发,小 AAA 开车行驶的路程总数与小 B 行驶的路程总数的比值最小。

接下来的 MMM 行,每行包含 222 个整数,之间用一个空格隔开,依次表示在给定的 SiS_iS​i​​ 和 XiX_iX​i​​ 下小 A 行驶的里程总数和小 B 行驶的里程总数。

样例

样例输入 1

4
2 3 1 4
3
4
1 3
2 3
3 3
4 3

样例输出 1

1
1 1
2 0
0 0
0 0

样例 1 解释

各个城市的海拔高度以及两个城市间的距离如上图所示。

  • 如果从城市 1 出发,可以到达的城市为 2,3,4,这几个城市与城市 1 的距离分别为 1,1,2,但是由于城市 3 的海拔高度低于城市 2,所以我们认为城市 3 离城市 1 最近,城市 2 离城市 1 第二近,所以小 A 会走到城市 2。到达城市 2 后,前面可以到达的城市为 3,4,这两个城市与城市 2 的距离分别为 2,1,所以城市 4 离城市 2 最近,因此小 B 会走到城市 4。到达城市 4 后,前面已没有可到达的城市,所以旅行结束。
  • 如果从城市 2 出发,可以到达的城市为 3,4,这两个城市与城市 2 的距离分别为 2,1,由于城市 3 离城市 2 第二近,所以小 A 会走到城市 3。到达城市 3 后,前面尚未旅行的城市为 4,所以城市 4 离城市 3 最近,但是如果要到达城市 4,则总路程为 2+3=5>32+3=5>32+3=5>3,所以小 B 会直接在城市 3 结束旅行。
  • 如果从城市 3 出发,可以到达的城市为 4,由于没有离城市 3 第二近的城市,因此旅行还未开始就结束了。
  • 如果从城市 4 出发,没有可以到达的城市,因此旅行还未开始就结束了。

样例输入 2

10
4 5 6 1 2 3 7 8 9 10
7
10
1 7
2 7
3 7
4 7
5 7
6 7
7 7
8 7
9 7
10 7

样例输出 2

2
3 2
2 4
2 1
2 4
5 1
5 1
2 1
2 0
0 0
0 0

样例 2 解释

当 X=7X = 7X=7 时,

  • 如果从城市 1 出发,则路线为 1 → 2 → 3 → 8 → 9,小 A 走的距离为 1+2=31+2=31+2=3,小 B 走的距离为 1+1=21+1=21+1=2。(在城市 1 时,距离小 A 最近的城市是 2 和 6,但是城市 2 的海拔更高,视为与城市 1 第二近的城市,所以小 A 最终选择城市 2;走到 9 后,小 A 只有城市 10 可以走,没有第 2 选择可以选,所以没法做出选择,结束旅行)
  • 如果从城市 2 出发,则路线为 2 → 6 → 7,小 A 和小 B 走的距离分别为 2,4。
  • 如果从城市 3 出发,则路线为 3 → 8 → 9,小 A 和小 B 走的距离分别为 2,1。
  • 如果从城市 4 出发,则路线为 4 → 6 → 7,小 A 和小 B 走的距离分别为 2,4。
  • 如果从城市 5 出发,则路线为 5 → 7 → 8,小 A 和小 B 走的距离分别为 5,1。
  • 如果从城市 6 出发,则路线为 6 → 8 → 9,小 A 和小 B 走的距离分别为 5,1。
  • 如果从城市 7 出发,则路线为 7 → 9 → 10,小 A 和小 B 走的距离分别为 2,1。
  • 如果从城市 8 出发,则路线为 8 → 10,小 A 和小 B 走的距离分别为 2,0。
  • 如果从城市 9 出发,则路线为 9,小 A 和小 B 走的距离分别为 0,0(旅行一开始就结束了)。
  • 如果从城市 10 出发,则路线为 10,小 A 和小 B 走的距离分别为 0,0。

从城市 2 或者城市 4 出发小 A 行驶的路程总数与小 B 行驶的路程总数的比值都最小,但是城市 2 的海拔更高,所以输出第一行为 2。

数据范围与提示

对于 30% 的数据,有 1≤N≤201 \leq N \leq 201≤N≤20,1≤M≤201 \leq M \leq 201≤M≤20;

对于 40% 的数据,有 1≤N≤1001 \leq N \leq 1001≤N≤100,1≤M≤1001 \leq M \leq 1001≤M≤100;

对于 50% 的数据,有 1≤N≤1001 \leq N \leq 1001≤N≤100,1≤M≤10001 \leq M \leq 1\,0001≤M≤1000;

对于 70% 的数据,有 1≤N≤10001 \leq N \leq 1\,0001≤N≤1000,1≤M≤100001 \leq M \leq 10\,0001≤M≤10000;

对于 100% 的数据,有 1≤N≤1000001 \leq N \leq 100\,0001≤N≤100000,1≤M≤100001 \leq M \leq 10\,0001≤M≤10000,∣Hi∣≤109|H_i| \leq 10^9∣H​i​​∣≤10​9​​,0≤Xi≤109∀i≥00 \leq X_i \leq 10^9\,\,\forall i \geq 00≤X​i​​≤10​9​​∀i≥0,1≤Si≤N∀i≥11 \leq S_i \leq N\,\,\forall i \geq 11≤S​i​​≤N∀i≥1,数据保证 HiH_iH​i​​ 各不相同。

 

作为联赛第3题算法是裸的,但处理巨烦

 

第一步:可以看出和决策先后没有关系,每一种走法都是唯一的

第二步:预处理出小A和小B的每种走法,顺便记权值

            这步巨烦

             好几种处理方法:set,splay,treap(ORZ)       

                                        并查集,链表(平民化)

             我这弱鸡只能写链表,写的心态爆炸

第3步:用ST表维护小A先走,再小B走,再小A走,再小B走,……,最后再小B走

                 S[i][j]表示从i号节点小A和小B各走2^j步走到的节点

                SW[i][j]表示—…………………………………的权值

第4步,求出答案后,还要尝试一下小A还能不能再走,如果能就走

GG啦

我搞不懂GG为啥输的人要发?

#include<cstdio>
#include<algorithm>
const int INF=1e9+1;
#include<cmath>
#define ll long long
using namespace std;
inline int read()
{
	int ret=0; bool f=0;
	char ch=getchar();
	while(ch<'0'||ch>'9') 
	{
		if(ch=='-') f=1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9')
		ret=(ret<<1)+(ret<<3)+ch-'0',ch=getchar();
	return f?-ret:ret;
}

int n,X;
const int N=1e5+5;
int b[N],f[N],nxt[N],pre[N];
int A[N],B[N],AW[N],BW[N],S[N][20],SW[N][20],SA[N][20],SB[N][20];

struct NA{
	int id,x;
}a[N];

bool cmp(NA i,NA j)
{
	return i.x<j.x;
}
int main()
{
	n=read();
	for(int i=1;i<=n;i++)
		a[i].x=read(),a[i].id=i,nxt[i]=i+1,pre[i]=i-1;
	nxt[0]=nxt[n]=0,pre[1]=0;
	sort(a+1,a+n+1,cmp);
	
	for(int i=1;i<=n;i++)
		b[a[i].id]=i;
	for(int i=1;i<=n;i++)
	{
		int u=pre[b[i]],v=nxt[b[i]];
		if(!u&&!v) break;
		if(v&&(!u||abs(a[u].x-a[b[i]].x)>abs(a[v].x-a[b[i]].x))) 
			B[i]=a[v].id,BW[i]=abs(a[v].x-a[b[i]].x);
				else B[i]=a[u].id,BW[i]=abs(a[u].x-a[b[i]].x);
		if(pre[b[i]]) nxt[pre[b[i]]]=nxt[b[i]];
		if(nxt[b[i]]) pre[nxt[b[i]]]=pre[b[i]];
	}
	
	for(int i=1;i<=n;i++)
		nxt[i]=i+1,pre[i]=i-1;
	nxt[n]=nxt[0]=0,pre[1]=pre[0]=0;
	for(int i=1;i<=n;i++)
	{
		if(!pre[b[i]]&&!nxt[b[i]]) continue;
		if(!pre[b[i]]&&nxt[nxt[b[i]]]||pre[b[i]]&&nxt[nxt[b[i]]]&&abs(a[pre[b[i]]].x-a[b[i]].x)>abs(a[nxt[nxt[b[i]]]].x-a[b[i]].x))
			A[i]=a[nxt[nxt[b[i]]]].id,AW[i]=abs(a[nxt[nxt[b[i]]]].x-a[b[i]].x);
		else if(!nxt[b[i]]&&pre[pre[b[i]]]||nxt[b[i]]&&pre[pre[b[i]]]&&abs(a[nxt[b[i]]].x-a[b[i]].x)>=abs(a[pre[pre[b[i]]]].x-a[b[i]].x))
			A[i]=a[pre[pre[b[i]]]].id,AW[i]=abs(a[pre[pre[b[i]]]].x-a[b[i]].x);
		else if(nxt[b[i]]&&pre[b[i]]) 
			{
				if(abs(a[nxt[b[i]]].x-a[b[i]].x)<abs(a[pre[b[i]]].x-a[b[i]].x))
					A[i]=a[pre[b[i]]].id,AW[i]=abs(a[pre[b[i]]].x-a[b[i]].x);
						else A[i]=a[nxt[b[i]]].id,AW[i]=abs(a[nxt[b[i]]].x-a[b[i]].x);
			}
		if(pre[b[i]]) nxt[pre[b[i]]]=nxt[b[i]];
		if(nxt[b[i]]) pre[nxt[b[i]]]=pre[b[i]];
	}

	for(int i=1;i<=n;i++) 
		if(A[i]&&B[A[i]])
			S[i][0]=B[A[i]],
			SW[i][0]=min(INF,AW[i]+BW[A[i]]),
			SB[i][0]=min(INF,BW[A[i]]),
			SA[i][0]=min(INF,AW[i]);
		
	for(int j=1;j<20;j++)
		for(int i=1;i<=n;i++)
			if(S[i][j-1]&&S[S[i][j-1]][j-1])
				S[i][j]=S[S[i][j-1]][j-1],
				SW[i][j]=min(INF,SW[i][j-1]+SW[S[i][j-1]][j-1]),
				SB[i][j]=min(INF,SB[i][j-1]+SB[S[i][j-1]][j-1]),
				SA[i][j]=min(INF,SA[i][j-1]+SA[S[i][j-1]][j-1]);
		
	X=read(); 
	int ans1=INF+1,ans2=0;
	int t=0;
	for(int i=1;i<=n;i++)
	{
		int sA=0,sB=0,s=0; 
		int u=i;
		for(int j=19;j>=0;j--)
			if(S[u][j]) 
			{
				if((ll)s+SW[u][j]<=X)
					s+=SW[u][j],sA+=SA[u][j],sB+=SB[u][j],
					u=S[u][j];
			}
		if(A[u]&&s+AW[u]<=X) sA+=AW[u]; 
		if((ll)ans1*sB>(ll)sA*ans2) 
			ans1=sA,ans2=sB,t=i;
	}
	printf("%d\n",t);
	
	t=read();
	while(t--)
	{
		int u=read(),s=0,sA=0,sB=0; X=read();
		for(int j=19;j>=0;j--)
			if(S[u][j]) 
			{
				if((ll)s+SW[u][j]<=X)
					s+=SW[u][j],sA+=SA[u][j],sB+=SB[u][j],
					u=S[u][j];
			}
		if(A[u]&&s+AW[u]<=X) sA+=AW[u]; 
		printf("%d %d\n",sA,sB);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值