NOIP2012 开车旅行

NOIP2012 开车旅行

Description

小A 和小B决定利用假期外出旅行,他们将想去的城市从1到N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i的海拔高度为Hi,城市 i 和城市 j 之间的距离 d[i,j]恰好是这两个城市海拔高度之差的绝对值,即d[i, j] = |Hi − Hj|。

旅行过程中,小A 和小B轮流开车,第一天小A 开车,之后每天轮换一次。他们计划选择一个城市 S 作为起点,一直向东行驶,并且最多行驶 X 公里就结束旅行。小 A 和小B的驾驶风格不同,小 B 总是沿着前进方向选择一个最近的城市作为目的地,而小 A 总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出X公里,他们就会结束旅行。

在启程之前,小A 想知道两个问题:

1.对于一个给定的 X=X0,从哪一个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值最小(如果小 B的行驶路程为0,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小A 开车行驶的路程总数与小B行驶的路程总数的比值都最小,则输出海拔最高的那个城市。

2.对任意给定的 X=Xi和出发城市 Si,小 A 开车行驶的路程总数以及小 B 行驶的路程总数。

Input Description

第一行包含一个整数 N,表示城市的数目。

第二行有 N 个整数,每两个整数之间用一个空格隔开,依次表示城市 1 到城市 N 的海拔高度,即H1,H2,……,Hn,且每个Hi都是不同的。

第三行包含一个整数 X0。

第四行为一个整数 M,表示给定M组Si和 Xi。

接下来的M行,每行包含2个整数Si和Xi,表示从城市 Si出发,最多行驶Xi公里。

Output Description

输出共M+1 行。

第一行包含一个整数S0,表示对于给定的X0,从编号为S0的城市出发,小A开车行驶的路程总数与小B行驶的路程总数的比值最小。

接下来的 M 行,每行包含 2 个整数,之间用一个空格隔开,依次表示在给定的 Si和Xi下小A行驶的里程总数和小B 行驶的里程总数。

Sample Input

【样例1】

4

2 3 1 4

3

4

1 3

2 3

3 3

4 3

【样例2】

10

4 5 6 1 2 3 7 8 9 10

7

10

1 7

2 7

3 7

4 7

5 7

6 7

7 7

8 7

9 7

10 7

Sample Output

【样例1】

1

1 1

2 0

0 0

0 0

【样例2】

2

3 2

2 4

2 1

2 4

5 1

5 1

2 1

2 0

0 0

0 0

Hint

【输入输出样例1说明】

如果从城市1出发, 可以到达的城市为2,3,4,这几个城市与城市 1的距离分别为 1,1,2,但是由于城市3的海拔高度低于城市 2,所以我们认为城市 3离城市 1最近,城市 2离城市1 第二近,所以小 A 会走到城市 2。到达城市 2 后,前面可以到达的城市为 3,4,这两个城市与城市 2 的距离分别为 2,1,所以城市 4离城市 2最近,因此小 B 会走到城市 4。到达城市4后,前面已没有可到达的城市,所以旅行结束。

如果从城市2出发,可以到达的城市为3,4,这两个城市与城市 2 的距离分别为 2,1,由于城市3离城市2第二近,所以小A会走到城市 3。到达城市3后,前面尚未旅行的城市为4,所以城市 4 离城市 3 最近,但是如果要到达城市 4,则总路程为 2+3=5>3,所以小 B 会直接在城市3结束旅行。

如果从城市3出发,可以到达的城市为4,由于没有离城市3 第二近的城市,因此旅行还未开始就结束了。

如果从城市4出发,没有可以到达的城市,因此旅行还未开始就结束了。

【输入输出样例2说明】

当 X=7时,

如果从城市1出发,则路线为 1 -> 2 -> 3 -> 8 -> 9,小A 走的距离为1+2=3,小B走的距离为 1+1=2。(在城市 1 时,距离小 A 最近的城市是 2 和 6,但是城市 2 的海拔更高,视为与城市1第二近的城市,所以小A 最终选择城市 2;走到9后,小A只有城市10 可以走,没有第2选择可以选,所以没法做出选择,结束旅行)

如果从城市2出发,则路线为 2 -> 6 -> 7 ,小A 和小B走的距离分别为 2,4。

如果从城市3出发,则路线为 3 -> 8 -> 9,小A和小B走的距离分别为 2,1。

如果从城市4出发,则路线为 4 -> 6 -> 7,小A和小B走的距离分别为 2,4。

如果从城市5出发,则路线为 5 -> 7 -> 8 ,小A 和小B走的距离分别为 5,1。

如果从城市6出发,则路线为 6 -> 8 -> 9,小A和小B走的距离分别为 5,1。

如果从城市7出发,则路线为 7 -> 9 -> 10,小A 和小B走的距离分别为 2,1。

如果从城市8出发,则路线为 8 -> 10,小A 和小B走的距离分别为2,0。

如果从城市 9 出发,则路线为 9,小 A 和小 B 走的距离分别为 0,0(旅行一开始就结束了)。

如果从城市10出发,则路线为 10,小A 和小B 走的距离分别为0,0。

从城市 2 或者城市 4 出发小 A 行驶的路程总数与小 B 行驶的路程总数的比值都最小,但是城市2的海拔更高,所以输出第一行为2

【数据范围】

对于30%的数据,有1≤N≤20,1≤M≤20;

对于40%的数据,有1≤N≤100,1≤M≤100;

对于50%的数据,有1≤N≤100,1≤M≤1,000;

对于70%的数据,有1≤N≤1,000,1≤M≤10,000;

对于100%的数据,有1≤N≤100,000, 1≤M≤10,000, -1,000,000,000≤Hi≤1,000,000,000,0≤X0≤1,000,000,000,1≤Si≤N,0≤Xi≤1,000,000,000,数据保证Hi互不相同。

Solution:

这题目好长啊…

首先这题裸分就是70分,我们通过 O(n2) 可以直接处理出每个点向后走到达的点。然后对于第一个询问,直接枚举起始点, O(n2) 可解。第二种询问用 O(mn) 也可以直接解决。

然后对于满分做法,其实倍增已经是非常明显了。我们可以将一个点拆成两个点,分别表示A走出与B走出,用 i i+n表示。倍增数组中存 disA , disB 与到达的点,初始化时A->B,B->A,然后直接倍增就可以了。对于初始化,用set求一下就可以了。总复杂度 O((n+m)logn)

#include<ctime>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<vector>
#include<string>
#define ll long long
#define lson (p<<1)
#define rson (p<<1|1)
#define fi first
#define se second
#define lowbit(x) ((x)&(-x))
#define siz(x) (int)(x.size())
#define pll pair<ll,ll>
#define mp make_pair
using namespace std;
inline void Rd(int &res){
    char c;res=0;int f=1;
    while(c=getchar(),c<'0'&&c!='-');
    if(c=='-'){f=-1;c=getchar();}
    do{
        res=(res<<1)+(res<<3)+(c^48);
    }while(c=getchar(),c>='0');
    res*=f;
}
template <class T>void prin(T x){
    if(!x)return ;
    prin(x/10);
    putchar(x%10^48);
}
template <class T>void pf(T x){
    if(!x)putchar('0');
    else prin(x);
}
const int M=100005;
const int S=17;
int n,m,x0;
int QS[M],QX[M],H[M];
struct Node{
    int x;
    bool operator <(const Node &A)const{
        return H[x]<H[A.x];
    }
};
struct node{
    int x,h;
    bool operator <(const node &A)const{
        if(h!=A.h)return h<A.h;
        else return H[x]<H[A.x];
    }
};
struct ss{int to;ll dis1,dis2;}dp[S+2][M<<1];
set<Node>Q;
void Find(int x){
    dp[0][x].to=dp[0][x+n].to=-1;
    dp[0][x].dis1=dp[0][x+n].dis1=0;
    dp[0][x].dis2=dp[0][x+n].dis2=0;
    vector<node>K;
    set<Node>::iterator it=Q.lower_bound((Node){x});
    if(it!=Q.end()){
        int id=(*it).x;
        K.push_back((node){id,abs(H[id]-H[x])});
        it++;
        if(it!=Q.end()){
            int id=(*it).x;
            K.push_back((node){id,abs(H[id]-H[x])});
        }
        it--;
    }
    if(it!=Q.begin()){
        it--;
        int id=(*it).x;
        K.push_back((node){id,abs(H[id]-H[x])});
        if(it!=Q.begin()){
            it--;
            int id=(*it).x;
            K.push_back((node){id,abs(H[id]-H[x])});
        }
    }
    sort(K.begin(),K.end());
    if(K.size()>=1){
        dp[0][x+n].to=K[0].x;
        dp[0][x+n].dis2=K[0].h;
        if(K.size()>=2){
            dp[0][x].to=K[1].x+n;
            dp[0][x].dis1=K[1].h;
        }
    }
}
pll solve(int s,int x){
    pll rs;rs.fi=rs.se=0;
    for(int i=S;i>=0;i--){
        if(dp[i][s].to==-1)continue;
        if(dp[i][s].dis1+dp[i][s].dis2+rs.fi+rs.se<=x){
            rs.fi+=dp[i][s].dis1;
            rs.se+=dp[i][s].dis2;
            s=dp[i][s].to;
        }
    }
    return rs;
}
int main(){
//  freopen("drive.in","r",stdin);
//  freopen("drive.out","w",stdout);
    Rd(n);
    for(int i=1;i<=n;i++)Rd(H[i]);
    Rd(x0);Rd(m);
    for(int i=1;i<=m;i++)Rd(QS[i]),Rd(QX[i]);
    for(int i=n;i>=1;i--){//初始化
        Find(i);
        Q.insert((Node){i});
    }
    for(int i=1;i<=S;i++)
        for(int j=1;j<=n*2;j++){//倍增
            if(dp[i-1][j].to!=-1){
                dp[i][j].to=dp[i-1][dp[i-1][j].to].to;
                dp[i][j].dis1=dp[i-1][j].dis1+dp[i-1][dp[i-1][j].to].dis1;
                dp[i][j].dis2=dp[i-1][j].dis2+dp[i-1][dp[i-1][j].to].dis2;
            }else dp[i][j].to=-1;
        }
    pll ans;
    ans.se=-1;
    int id;
    for(int i=1;i<=n;i++){
        pll res=solve(i,x0);
        if(ans.se==-1||res.fi*ans.se<res.se*ans.fi){
            if(ans.se!=-1&&res.fi*ans.se==res.se*ans.fi){
                if(H[i]<H[id])continue;
            }
            id=i;
            ans.fi=res.fi;
            ans.se=res.se;
        }
    }
    pf(id);putchar('\n');
    for(int i=1;i<=m;i++){
        pll res=solve(QS[i],QX[i]);
        pf(res.fi);putchar(' ');pf(res.se);putchar('\n');
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值