魏传之长坂逆袭、蜀传之单刀赴会、吴传之火烧连营

10 篇文章 0 订阅
7 篇文章 0 订阅

A、魏传之长坂逆袭

时间限制: 1 Sec  内存限制: 128 MB

题目描述

众所周知,刘备在长坂坡上与他的一众将领各种开挂,硬生生从曹操手中逃了出去,随后与孙权一起火烧赤壁、占有荆益、成就霸业。而曹操则在赤壁一败后再起不能,终生无力南下。

建安二十五年(220年),曹操已到风烛残年,但仍难忘当年长坂的失误,霸业的破灭。他想如果在刘备逃亡的路中事先布下一些陷阱,便能拖延刘备的逃脱时间了。你作为曹操身边的太傅,有幸穿越到了208年的长坂坡,为大魏帝国贡献一份力,布置一些陷阱。但时空守卫者告诉你你不能改变历史,不能拖增大刘备的最大逃脱时间,但你身为魏武之仕,忠心报国,希望能添加一些陷阱使得刘备不论怎么逃跑所用的时间都一样。

已知共有n个据点,n-1条栈道,保证据点联通。1号据点为刘备军逃跑的起点,当刘备军跑到某个据点后不能再前进时视为刘备军逃跑结束。在任意一个栈道上放置1个陷阱会使通过它的时间+1,且你可以在任意一个栈道上放置任意数量的陷阱。

现在问你在不改变刘备军当前最大逃跑时间的前提下,需要添加最少陷阱,使得刘备军的所有逃脱时间都尽量的大。

输入

 第一行一个数n,表示据点个数。

    接下来n-1行每行三个数,ai、bi、ti,表示从据点ai通过第i个栈道到bi耗时ti

输出

仅包含一个数,为需要添加的最少陷阱数。

样例输入

3 1 2 1 1 3 3

样例输出

2

提示

【数据规模和约定】

对于 5%的数据,1<=n<=100000,1<=ti<=200000

对于 100%的数据,1<=n<=500000,0<ti<=1000000

 

这是一棵树

每次对于深度越低的点能放多少陷阱就放多少陷阱

#include<cstdio> 
#include<iostream>
#define ll long long
using namespace std;
int read()
{
    int ret=0; char ch=getchar();
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch>='0'&&ch<='9')
        ret=(ret<<1)+(ret<<3)+ch-'0',ch=getchar();
    return ret;
}
 
const int N=1e6+5; 
int n,num,id[N];
ll mx,ss[N],a[N],ans;
int cnt,he[N],to[N],nxt[N],w[N];
 
inline void add(int u,int v,int k)
{
    to[++cnt]=v,w[cnt]=k,nxt[cnt]=he[u],he[u]=cnt;
}
 
void dfs(int u,ll s)
{
    bool ch=0;
    for(int e=he[u];e;e=nxt[e])
        ch=1,dfs(to[e],s+w[e]);
    if(!ch) mx=max(mx,s),id[++num]=u,ss[num]=s;
}
 
void dfs1(int u)
{
    if(he[u]) a[u]=1e18;
    for(int e=he[u];e;e=nxt[e])
    {
        int v=to[e];
        dfs1(v); a[u]=min(a[u],a[v]);
    }
    for(int e=he[u];e;e=nxt[e])
        ans+=a[to[e]]-a[u];
}
int main()
{
    n=read();
    for(int i=1;i<n;i++)
    {
        int u=read(),v=read(),k=read();
        add(u,v,k);
    }
    dfs(1,0);
    for(int i=1;i<=num;i++)a[id[i]]=mx-ss[i];
    dfs1(1);
    printf("%lld",ans);
    return 0;
}

 

B、蜀传之单刀赴会

时间限制: 1 Sec  内存限制: 128 MB

题目描述

【题目背景】

公元215年,刘备取益州,孙权令诸葛瑾找刘备索要荆州。刘备不答应,孙权极为恼恨,便派吕蒙率军取长沙、零陵、桂阳三郡。长沙、桂阳蜀将当即投降。刘备得知后,亲自从成都赶到公安(今湖北公安),派大将关羽争夺三郡。孙权也随即进驻陆口,派鲁肃屯兵益阳,抵挡关羽。双方剑拔弩张,孙刘联盟面临破裂,在这紧要关头,鲁肃为了维护孙刘联盟,不给曹操可乘之机,决定当面和关羽商谈。“肃邀羽相见,各驻兵马百步上,但诸将军单刀俱会”。双方经过会谈,缓和了紧张局势。随后,孙权与刘备商定平分荆州,“割湘水为界,于是罢军”,孙刘联盟因此能继续维持。

【问题描述】

关羽受鲁肃邀请,为了大局,他决定冒险赴会。他带着侍从周仓,义子关平,骑着赤兔马,手持青龙偃月刀,从军营出发了,这就是历史上赫赫有名的“单刀赴会”。关羽平时因为军务繁重,决定在这次出行中拜访几个多日不见的好朋友。然而局势紧张,这次出行要在限定时间内完成,关公希望你能够帮助他安排一下行程,安排一种出行方式,使得从军营出发,到达鲁肃处赴会再回来,同时拜访到尽可能多的朋友,在满足这些条件下行程最短。注意拜访朋友可以在赴会之前,也可以在赴会之后。现在给出地图,请你完成接下来的任务

输入

   第一行n,m,k,t,代表有n个地点,m条道路,有k个朋友(不包括鲁肃),以及限定时间t(行走1单位长度的路程用时1单位时间)。

    接下来m行,每行有x,y,w三个整数,代表x和y之间有长度为w的道路相连。

    接下来一行有k个整数,代表朋友所在的都城编号(保证两两不同,且不在1和n)

   (我们约定1是关羽的营地,n是鲁肃的营地)

输出

输出两个整数,分别是最多可以拜访的朋友数,以及在这种情况下最少需要耗费的时间,如果连到达鲁肃再回来都无法完成,输出一个-1就可以了。

样例输入

5 7 2 15 1 2 5 1 3 3 2 3 1 2 4 1 3 4 4 2 5 2 4 5 3 2 4

样例输出

2 14

提示

【数据规模和约定】

有10%数据,n<=10,m<=50,k<=5;

有10%数据,k=0;

有10%数据,k=1;

另30%数据,k<=5;

对于100%数据,n<=10000,m<=50000,k<=15,t<=2147483647,w<=10000

 

先跑一遍dijkstra,然后状压dp

#include<cstdio>
#include<queue>
#include<iostream>
#define ll long long
using namespace std;
int read()
{
    int ret=0; char ch=getchar();
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch>='0'&&ch<='9') 
        ret=(ret<<1)+(ret<<3)+ch-'0',ch=getchar();
    return ret;
}
  
const int N=2e5+5;
int n,m,p,t,a[25],d[N],dis[25][25],num[N];
ll f[25][N];
int cnt,he[N],to[N],nxt[N],w[N],ans,anss;
bool fl[N];
struct NA{
    int id,x;
};
bool operator >(NA i,NA j)
{
    return i.x>j.x;
}
priority_queue<NA,vector<NA>,greater<NA> >q;
   
inline void add(int u,int v,int k)
{
    to[++cnt]=v,nxt[cnt]=he[u],w[cnt]=k,he[u]=cnt;
}
  
int dist(int s,int g)
{
    while(!q.empty()) q.pop();
    for(int i=1;i<=n;i++) fl[i]=0,d[i]=2e9;
    q.push((NA){s,d[s]=0});
    for(int i=1;i<=n;i++)
    {
        while(!q.empty()&&fl[q.top().id]) q.pop();
        if(q.empty()) break;
        int u=q.top().id; q.pop(); fl[u]=1;
        if(u==g) break;
        for(int e=he[u];e;e=nxt[e])
        {
            int v=to[e];
            if(!fl[v]&&d[v]>d[u]+w[e]) 
                q.push((NA){v,d[v]=d[u]+w[e]});
        }
    }
    return d[g];
}
  
int main()
{
    n=read(),m=read(),p=read(),t=read();
    for(int i=1;i<=m;i++)
    {
        int u=read(),v=read(),k=read();
        add(u,v,k),add(v,u,k);
    }
    for(int i=1;i<=p;i++) a[i]=read();
    a[p+1]=1,a[p+2]=n;
    for(int i=1;i<=p+2;i++)
        for(int S=0;S<1<<p+2;S++) f[i][S]=1e15;
    ll x=dist(1,n);
    if(x==2e9||x<<1>t) 
    {
        puts("-1"); return 0;
    }
    for(int i=1;i<p+2;i++)
        for(int j=i+1;j<=p+2;j++) 
            dis[j][i]=dis[i][j]=dist(a[i],a[j]);
    f[p+1][1<<p]=0;
    for(int S=0;S<1<<p+2;S++)
        if(!(S&1<<p))
        {
            int SS=S|1<<p;
            for(int i=1;i<=p+2;i++)
                for(int j=1;j<=p+2;j++)
                    if(i!=j&&1<<j-1&SS&&f[j][SS]!=1e15&&dis[i][j]!=2e9)
                        f[i][SS|1<<i-1]=min(f[i][SS|1<<i-1],f[j][SS]+dis[i][j]);
        }
    for(int S=1;S<1<<p+2;S++) num[S]=num[S-(S&-S)]+1;
    ans=0; anss=x<<1;
    for(int SS=0;SS<1<<p;SS++)
    {
        int S=SS|1<<p|1<<p+1;
        for(int i=1;i<=p+2;i++)
        {
            if((1<<i-1)&S&&f[i][S]!=1e15)
            {
                ll ti=f[i][S]+dis[i][p+1];
                if(ti<=t)    
                    if(ans==num[S]) anss=min(anss,(int)ti);
                        else if(ans<num[S]) ans=num[S],anss=ti;
            }
        }
    }
    printf("%d %d\n",ans-2,anss);
    return 0;
}

 

C、吴传之火烧连营

时间限制: 1 Sec  内存限制: 128 MB  Special Judge

题目描述

【题目背景】

蜀汉章武元年(221年),刘备为报吴夺荆州、关羽被杀之仇,率大军攻吴。吴将陆逊为避其锋,坚守不战,双方成对峙之势。蜀军远征,补给困难,又不能速战速决,加上入夏以后天气炎热,以致锐气渐失,士气低落。刘备为舒缓军士酷热之苦,命蜀军在山林中安营扎寨以避暑热。陆逊看准时机,命士兵每人带一把茅草,到达蜀军营垒时边放火边猛攻。蜀军营寨的木栅和周围的林木为易燃之物,火势迅速在各营漫延。蜀军大乱,被吴军连破四十余营。陆逊火烧连营的成功,决定了夷陵之战蜀败吴胜的结果。

 

【问题描述】

刘备带兵深入吴境,陆逊却避而不出,蜀军只得在山林中安营扎寨。而刘备在扎营时却犯了兵家大忌,将兵营排列成一条直线,远远看去,就像是一条串着珠子的链,美其名曰:链寨。如果吴军将领是一般人,那么这也许不算什么,而陆逊何许人也,他可是江东才子,能力不低于周瑜的一代儒将。他看到刘备这样排阵,心生一计,决定用火攻破阵。然而,火计除了要有风,选定引火点也非常重要,对于刘备的布阵,最佳引火点一定是n个兵营中的一个。而因为风水轮流转,每天的最佳引火点都不一样。我们给每个兵营定下一个固定不变的火攻值Ai,每天定下一个风水值K,对于每天的最佳引火点,显然是所有兵营中火攻值与风水值异或的结果最大的那一个兵营。然而,陆逊是个谨慎的人,他要观察时机,在m天中选定一个最佳的进攻的日期,为此他演算出了这m天每天的风水值,然后他希望你能够告诉他这m天每天最佳引火点的兵营编号。

 

输入

第一行n,m,代表有n个兵营,m天。

    接下来一行有n个非负整数,代表这n个兵营的火攻值。

    接下来一行有m个非负整数,代表这m天的风水值。

 

输出

输出共m行,每行输出一个整数,代表第m天最佳引火点的编号。

如果存在多个最佳引火点使得火攻值与风水值的异或值最小,请任意输出一组解即可。

 

样例输入

3 2 1 2 3 4 5

样例输出

3 2

提示

 

【样例解释】

 

对于第1天,由于4 xor 1=5, 4 xor 2=6, 4 xor 3=7,选择第3个引火点是最佳的。

 

对于第2天,由于5 xor 1=4, 5 xor 2=7, 5 xor 3=6,选择第2个引火点是最佳的。

 

 

 

【数据规模和约定】

 

对于30%数据,n<=1000,m<=1000

 

对于100%数据,n<=100000,m<=100000, 0<=k,ai<=2147483647

 

这不是一道常规的trie树?

#include<cstdio> 
using namespace std;
int read()
{
    int ret=0; char ch=getchar();
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch>='0'&&ch<='9')
        ret=(ret<<1)+(ret<<3)+ch-'0',ch=getchar();
    return ret;
}
 
const int N=1e7+5;
int n,m,p,now,nxt[N][2],ans[N];
 
int main()
{
    n=read(),m=read();
    p=1;
    for(int i=1;i<=n;i++)
    {
        int x=read();
        now=1;
        for(int j=31;j;j--)
        {
            int t=(x>>(j-1))&1;
            if(nxt[now][t]) now=nxt[now][t];
                else now=nxt[now][t]=++p,ans[p]=i;
        }
    }
    for(int i=1;i<=m;i++)
    {
        int x=read();
        now=1;
        for(int j=31;j;j--)
        {
            int t=!((x>>(j-1))&1);
            if(!nxt[now][t]) 
            {
                now=nxt[now][!t];
            } else now=nxt[now][t];
        }
        printf("%d\n",ans[now]);
    }
    return 0;
}

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值