一、哈夫曼树
1.定义
带权路径长度WPL最小的二叉树称为哈夫曼树(最优二叉树)
2.构造哈夫曼树
-
基本原则:权值越大的叶子结点越靠近根结点
权值越小的叶子结点越远离根结点 -
构造过程:
特点:
①每个初始结点最终都成为叶结点,并且权值越小的结点到根结点的路径长度越大
② 构造过程中共新建了 N-1个结点(双分支结点),因此哈夫曼树中结点总数为2N-1
(即 n个权值构造的哈夫曼树具有2n-1个结点,非叶子结点的总数为:n-1)
③ 每次构造都选择2棵树作为新结点的孩子,因此哈夫曼树中不存在度为1的结点
④ 用n个叶子结点构造的哈夫曼树形态可能不唯一,但带权路径长度(WPL)唯一 -
栗子:设有7个叶子结点,它们的权集w为 {5,7,2,3,6,8,9 } ,构造一个哈夫曼树。并求带权路径长度WPL。
不成文的“潜规则”:构造出来的哈夫曼树是左小右大的。
二、哈夫曼编码(最优前缀编码)
构造思路:
栗子:已知某字符串 S 中共有 8 种字符[A,B,C,D,E,F,G,H],分别出现 2 次. 1 次. 4 次. 5 次. 7 次. 3 次. 4 次和 9 次。
1)试构造出哈夫曼编码树,并对每个字符进行编码
2)问该字符串的编码至少有多少位。
不难看出:权值越大,离根越近,编码越短
注意: 根据前缀编码(没有一个编码是另一个编码的前缀)的特点知。在一组字符的哈夫曼编码中,不可能出现一个字符的哈夫曼编码是另一个字符哈夫曼编码的前缀。 如:1 00,0 01,0,1,它不是前缀编码,也不是哈夫曼编码。