哈夫曼树与哈夫曼编码的考点

本文深入解析了哈夫曼树的定义及其构造过程,通过实例展示了如何创建哈夫曼树并计算带权路径长度WPL。同时,介绍了哈夫曼编码的构造思路及应用,通过具体例子说明了如何对字符进行编码,强调了前缀编码的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、哈夫曼树

1.定义

带权路径长度WPL最小的二叉树称为哈夫曼树(最优二叉树)

2.构造哈夫曼树

  • 基本原则:权值越大的叶子结点越靠近根结点
                      权值越小的叶子结点越远离根结点

  • 构造过程:
    在这里插入图片描述
    特点:
    ①每个初始结点最终都成为叶结点,并且权值越小的结点到根结点的路径长度越大
    构造过程中共新建了 N-1个结点(双分支结点),因此哈夫曼树中结点总数为2N-1
    (即 n个权值构造的哈夫曼树具有2n-1个结点,非叶子结点的总数为:n-1)
    ③ 每次构造都选择2棵树作为新结点的孩子,因此哈夫曼树中不存在度为1的结点
    用n个叶子结点构造的哈夫曼树形态可能不唯一,但带权路径长度(WPL)唯一

  • 栗子:设有7个叶子结点,它们的权集w为 {5,7,2,3,6,8,9 } ,构造一个哈夫曼树。并求带权路径长度WPL。
    在这里插入图片描述

不成文的“潜规则”:构造出来的哈夫曼树是左小右大的。

二、哈夫曼编码(最优前缀编码)

在这里插入图片描述
构造思路:
在这里插入图片描述
栗子:已知某字符串 S 中共有 8 种字符[A,B,C,D,E,F,G,H],分别出现 2 次. 1 次. 4 次. 5 次. 7 次. 3 次. 4 次和 9 次。
1)试构造出哈夫曼编码树,并对每个字符进行编码
2)问该字符串的编码至少有多少位。
在这里插入图片描述

不难看出:权值越大,离根越近,编码越短
注意: 根据前缀编码(没有一个编码是另一个编码的前缀)的特点知。在一组字符的哈夫曼编码中,不可能出现一个字符的哈夫曼编码是另一个字符哈夫曼编码的前缀。 如:1 00,0 01,01,它不是前缀编码,也不是哈夫曼编码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值