envi深度学习环境

本文详细介绍了在Windows上安装TensorflowGPU环境的过程,包括CUDA、cuDNN的安装,以及如何通过Conda创建和管理Tensorflow环境,遇到错误时提供了解决方案。最后测试了GPU的安装并处理了一个训练模型时的内存问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### ENVI 深度学习使用教程和功能介绍 #### 一、ENVI深度学习模块简介 ENVI深度学习模块旨在帮助用户利用先进的机器学习算法处理遥感影像数据。此模块集成了多种预训练模型和支持自定义模型的能力,适用于分类、目标检测等多种任务[^1]。 #### 二、安装与配置环境 对于希望使用最新版ENVI及其深度学习插件的用户来说,建议先按照官方指南完成软件本身的安装工作。特别注意的是,在2022年底发布的ENVI5.6.3版本中已经包含了对新版深度学习工具的支持——即ENVI Deep Learning V2.0;因此如果想要体验最新的特性,则应该优先考虑升级到这个版本[^3]。 #### 三、快速上手指南 为了使初次接触这项技术的人能够尽快熟悉其基本操作流程,《ENVI 深度学习 V1.2 操作教程》提供了详尽的操作指导文档。这份资料不仅涵盖了如何导入图像样本集、标注训练区域等内容,还深入讲解了一些高级话题比如调整网络参数优化效果等。 #### 四、核心功能展示 - **多源数据支持**:除了传统的光学卫星图片外,现在也增加了更多种类的数据源兼容性; - **自动化特征提取**:内置强大的卷积神经网络可以自动识别并抽取有用的信息; - **灵活的结果可视化**:通过直观的地图视图来呈现分析成果,便于进一步解释说明; - **高效的批处理能力**:允许一次性提交大量作业请求,并行计算提高效率。 ```python import envi_dl as edl # 加载已有的DL模型或创建一个新的实例 model = edl.load_model('path_to_saved_model') or edl.create_new_model() # 准备输入数据(此处假设为一组遥感影像) input_data = prepare_input_images() # 执行预测过程 predictions = model.predict(input_data) # 将结果导出成易于理解的形式 export_predictions(predictions, format='geojson') ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值