Description
Suppose an array of length n sorted in ascending order is rotated between 1 and n times. For example, the array nums = [0,1,4,4,5,6,7] might become:
- [4,5,6,7,0,1,4] if it was rotated 4 times.
- [0,1,4,4,5,6,7] if it was rotated 7 times.
Notice that rotating an array [a[0], a[1], a[2], …, a[n-1]] 1 time results in the array [a[n-1], a[0], a[1], a[2], …, a[n-2]].
Given the sorted rotated array nums that may contain duplicates, return the minimum element of this array.
You must decrease the overall operation steps as much as possible.
Examples
Example 1:
Input: nums = [1,3,5]
Output: 1
Example 2:
Input: nums = [2,2,2,0,1]
Output: 0
Constraints:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
nums is sorted and rotated between 1 and n times.
思路
大体上和 #153 是一样的思路,区别在于增加了一个step++步骤
也就是当nums[start] == nums[end]的时候,将start向右移动,直到nums[start] != nums[end],再执行原来的递归操作
代码
class Solution {
public int min(int[] nums, int start, int end){
int end_num = nums[end];
int i;
for(i = start; i < end; i++)
if(nums[i] != end_num)
break;
start = i;
if(start >= end)
return nums[start];
int mid = (start + end) / 2;
if(nums[start] < nums[end] || nums[start] > nums[mid])
return min(nums, start, mid);
else
return min(nums, mid + 1, end);
}
public int findMin(int[] nums) {
int len = nums.length - 1;
return min(nums, 0, len);
}
}