算法整理
文章平均质量分 73
yoyooyooo
这个作者很懒,什么都没留下…
展开
-
红黑树(Red Black Tree)基本性质 + 建树
红黑树:一种特殊的二叉搜索树二叉搜索树:一种树的类型,每个节点最多有两个子节点,其中其左节点一定小于当前节点,右节点一定大于当前节点二叉树的缺点:如果给定的初始序列顺序不好,可能会建出类似于链表的结构,对搜索速度全无助益红黑树的目的:构建一棵趋于平衡的二叉搜索树,杜绝bad case的出现情况。原创 2023-06-10 15:49:06 · 876 阅读 · 0 评论 -
其他 面试相关整理
其他面试整理在这里以wordcount为例子来说一下hadoop的数据走的流程,sort阶段发生在什么时候什么是死锁如何预防死锁linux查找某个正在运行的进程linux查看显存linux杀死进程什么是缓存命中率...原创 2022-03-20 23:59:09 · 1137 阅读 · 0 评论 -
具体题目 面试相关整理
其他面试整理在这里两堆水果:其中有橘子和苹果,第一堆中有黄色:绿色为7:3;第二堆中有黄色:绿色为5:5;已知橘子都是黄色,苹果都是绿色;那么现在拿出一个水果是苹果,则苹果是从第一堆拿出来的概率是多少?(3/8)用贝叶斯一个输入流,一直不断输出一个数字,随时可能停止,停止时要求立即输出一个之前所有数中的随机数,即每个数字输出的概率都相同,要求是只能申请常数大小的存储空间,不能O(n)大小。新来的数以1/n概率保留,原来的数以(n-1)/n概率保留。每次来一个数按概率抛弃一个数,剩一个数如何利用一原创 2022-03-20 23:57:31 · 118 阅读 · 0 评论 -
数学问题 面试复习整理
其他面试整理在这里矩阵秩的几何意义,这个概念具体有什么用秩主要是用来描述行(列)向量组所含向量的“真正”个数,知道了秩是多少,也就知道了最少用多少个向量就能表示这个向量组先验概率和后验概率似然和概率的区别矩阵的特征值和特征向量什么是伯努利分布xxx 的取值为 0/10/10/1,xxx 以 ppp 的概率为 111,(1−p)(1-p)(1−p) 的概率为0。发生事件 xxx 的概率P(x)=px(1−p)(1−x)P(x) = p^x (1-p)^{(1-x)}P(x)=px(1−p)(原创 2022-03-20 23:54:57 · 338 阅读 · 0 评论 -
数据结构 面试相关整理
其他面试整理在这里排序列举八大排序算法和他们的时间/空间复杂度排序方式平均情况时间复杂度最坏情况时间复杂度最好情况时间复杂度空间复杂度稳定性复杂性插入排序O(n2)O(n^2)O(n2)O(n2)O(n^2)O(n2)O(n2)O(n^2)O(n2)O(1)O(1)O(1)稳定简单希尔排序O(n1.3)O(n^{1.3})O(n1.3)--O(1)O(1)O(1)不稳定较复杂冒泡排序O(n2)O(n^2)O(n2)O(n2)O(原创 2022-03-20 23:52:31 · 1340 阅读 · 1 评论 -
编程语言 面试相关整理
如何断点调试python如何断点调试C++如何断点调试javapython有哪些解释器CPython:由C编写Jython:由Java编写,再JVM上实现IronPython:由C#编写,面向.NET平台Pypy:使用RPython实现python变量的生存周期是多少python如何编译,执行原理是什么用户提交源码后,解释器将源码转化为字节码,在Python中一般为.pyc文件,这个字节码机器不能执行,由虚拟机执行。由于字节码一般是不依赖于操作系统的,所以可以做到跨平台运行。当pyt.原创 2022-03-20 23:30:15 · 1081 阅读 · 0 评论 -
神经网络 面试相关整理
其他面试整理在这里基本概念损失函数损失函数,代价函数和目标函数1)损失函数:通常是针对单个训练样本而言,给定一个模型输出 yi′y_i'yi′ 和一个真实标签 yiy_iyi,损失函数输出一个实值损失 L=f(yi,yi′)L=f(y_i, y_i')L=f(yi,yi′)2)代价函数 Cost Function 通常是针对整个训练集(或一个batch)的总损失 J=∑i=1nf(yi,yi′)J=\sum_{i=1}^{n}f(y_i, y_i')J=∑i=1nf(yi,yi′原创 2022-03-20 23:26:21 · 1749 阅读 · 0 评论 -
机器学习 面试相关整理
其他面试整理在这里基本概念生成模型和判别模型参数模型和非参数模型有几种梯度下降算法什么情况下会出现过拟合如何解决过拟合l1/l2/dropout/增加数据量/bagging/boosting不变动模型和参数,只针对数据,如何减少过拟合什么情况下会出现梯度爆炸/消失如何解决梯度爆炸/消失泰勒展开公式L1和L2正则的区别,分别在什么情况下使用为什么L1正则能产生稀疏性L1不可导时候改如何处理近端梯度法、坐标下降法什么是凸优化问题,凸优化有什么优点有哪些凸优的学习器什么是K-原创 2022-03-20 23:16:16 · 1373 阅读 · 0 评论 -
NLP 面试相关整理
总览在这里基本问题tf-idf是什么描述单词在文档中的概率分布如何解决长文本问题有哪些分词方法怎么处理UNK英文可以用char-embedding;直接用UNK高维特征检索预训练语言模型Word2Vecword2vec的tricky是什么word embedding可以用auto-encoder来做吗不可以,因为one-hot向量中不包含任何信息word2vec中的高频效益是什么一些连接单词,比如and/of/the,他们很容易作为content word出现在别的单词原创 2022-03-20 23:07:10 · 222 阅读 · 0 评论 -
线段树(通过数组的构建方式)
这里只说最基础的线段树,不涉及lazy标记和延迟修改的操作用处面向数组中的数据,针对其中编号是连续的区间进行修改或统计的操作举一个小栗子,假设我们现在有10000个整数,存在 A[1]−A[10000]A[1]-A[10000]A[1]−A[10000] 中统计操作: 统计 [L,R][L, R][L,R] 的数字之和修改操作: 将第 LLL 个数增加 CCC如果不使用线段树,基本的处理方法有这两种:法1: 用原始数组进行存储,进行统计操作时候将 R-L+1个数进行相加,进行修改操作时原创 2021-10-08 18:00:43 · 278 阅读 · 0 评论 -
集成学习之Adaboost 算法及相关参数公式推导
集成学习什么是集成学习?集成学习就是将多个学习器通过各类方法集成起来,从而获得更好的学习效果的一种学习方式。一般来说,集成学习分为两种同质集成 该集成中仅仅包含同种类型的学习器异质继承 该集成中包含不同类型的学习器现在一般都使用同质集成的方式,常用的方法又可以分为两类序列化方法 个体学习器之间存在强依赖关系,必须串行生成,代表算法有Boosti原创 2020-09-26 01:05:52 · 490 阅读 · 0 评论 -
隐马尔科夫模型(Hidden Markov Model, HMM)
定义一个隐马尔科夫模型由2个随机过程 {xk,yk}\{x_k, y_k\}{xk,yk} 组成xkx_kxk 是不可观测到的有限状态 S={S1,S2,...,Sk}S = \{S_1, S_2, ..., S_k\}S={S1,S2,...,Sk} 集合(马式链)yky_kyk 是可观测到的有限状态的集合(观测链)组成一个隐马尔科夫模型可以表现为下图:由上图可知...原创 2019-06-15 21:57:41 · 326 阅读 · 0 评论 -
快速数论变换(NTT)
开头NTT就是对FFT进行了改进,上一篇中讲了FFT,可以看到FFT所用的单位根 wnkw_n^kwnk 的实部和虚部都是通过正弦和余弦函数计算而来的,所以不可避免地会有很多浮点数运算所以NTT就是在整数范围内寻找和单位根有相同性质的那些数,可以提升计算的精度这种整数被找到了,就是原根 欧拉函...原创 2019-03-09 23:59:43 · 889 阅读 · 0 评论 -
快速傅里叶变换(FFT)和逆快速傅里叶变换(IFFT)
多项式表示法与卷积多项式有两种表示方法系数表示法点值表示法系数表示法就是最普通的表示方法,如f(x)=a0x0+a1x1+a2x2+......+an−1xn−1f(x) = a_0x^0 + a_1x^1 + a_2x^2 + ...... + a_{n-1}x^{n-1} f(x)=a0x0+a1x1+a2x2+......+an−1xn−1则表示为 f(x)=...原创 2019-03-09 01:12:28 · 74103 阅读 · 11 评论 -
差分约束系统(System of Difference Constraints)
差分约束系统一个差分约束系统包含了{n个变量m个形如xj−xi≤bk(i,j∈[1,n],k∈[1,m])约束条件 \left\{\begin{array}{l}n个变量\\m个形如 x_j - x_i \leq b_k (i, j ∈[1, n], k∈[1, m]) 约束条件\\\end{array} \right. {n个变量m个形如xj−xi≤bk(i,j∈[1,n],k...原创 2019-03-05 23:51:52 · 482 阅读 · 0 评论