A novel method for identifying behavioural changes in animal movement data

本文介绍了一种新型方法用于识别动物移动数据中的行为变化点,该方法结合了似然方法和正交分解,适用于处理含有间隙和测量误差的数据。通过BCPA算法分析,能够检测出不易察觉的行为变化,提供对动物行为动态变化的深入理解。

A novel method for identifying behavioural changes in animal movement data

词语翻译

  • movement data 移动(运动)数据
  • gappiness 间隙
  • BCPA 行为变化点分析
  • compass orientation 方位
  • turning angles 转角
  • persistence velocity 持久速率
  • MLCP 极大似然变化点

相关定义

  • 平稳随机过程
    指统计特征不随时间平移而变化,即统计特征与时间起点的选择无关。
    现实生活中,很难会有严格满足平稳随机过程条件的情况,因此引入了广义平稳随机过程。对于时间序列{X(t)},称其为广义平稳随机过程,当且仅当:
    E(X(t))=m x  
    R x (t 1 ,t 2 )=R x (τ)=E[X(t 1 )X(t 2 )] 

其中, m x   为常数, τ  表示时间间隔,R x (t 1 ,t 2 ) 为自相关函数,反映随机过程X(t)在任意两个不同时刻之间的相关程度。

  • 平稳高斯过程
    根据中心极限定理可知,大量独立同分布的随机变量之和,其分布区域高斯分布。该方法称为随机过程的高斯化。
  • 一阶自回归模型AR(1)
    假设 X t   是平稳、正态、零均值的时序,有

    X t =φ 1 X (t1) +ε t ,ε t  NID(0,σ 2 ) 

    其中, φ 1   指一阶自相关函数, ε t   为t时刻的随机误差,它满足正态分布。

  • AR(1)与一元线性回归模型的区别
    一元线性回归模型表达了在相同时间t时,一个随机变量与其他随机变量之间的关系,是一个静态模型,即对随机变量的静态描述;而AR(1)表达了在不同时间t时,一个随机过程本身的观测数据之间的关系,即表达了时间序列内部的相关关系,是一个动态模型,即对随机变量的动态描述。

正文

Abstract

论文中将移动数据看作来自于一个连续随机过程的子采样,并介绍了BCPA算法,一种基于似然的方法,它可以分析出显著性结构变化。BCPA算法对存在(时空)间隙和测量误差都具有鲁棒性,同时可以找出那些不易被察觉的结构。

Introduction
Methods
  • Orthogonal decomposition of movement data(正交分解)
    原始移动数据包括n+1个观测数据,表示在时间T时的绝对位置为Z={X,Y}。将原来的绝对位置Z和绝对方位 Φ  转换为速度V 和转角 Ψ 

    V(T i )=Z i Z (i1) /T i T (i1)  

    Ψ(T i )=Φ i Φ (i1)  

    再将两者进行正交分解,得到持久速率 V P (t)  和转角速率 V t (t) 
    V P (T i )=V(T i )cos(Ψ(T i )) 

    V t (T i )=V(T i )sin(Ψ(T i )) 

    其中, V P   捕捉在一个给定方向上持续移动的倾向和大小, V t   捕捉在给定时间区域内朝垂直方向移动的趋势。此外,这些变量易于构建平稳的高斯自回归时间序列模型。通过直方图或Q-Q图展示移动数据得到经验型结果显示两个变量可有混合正态分布表示,且的 V t   均值接近为0。
    虽然进行正交分解,但实际中两者不是相互独立的。在论文中,在相互独立的情况下分别对两个变量进行分析。

  • Autocorrelated time-series model(自相关时间序列模型)
    假设持久速率 V P   是来自一个连续时空,平稳的高斯过程 W(t)  的样本,同时 W(t)  具有以下属性:

    W(0)=W 0 , 

    E[W(t)]=μ, 

    Var[W(t)]=σ 2 , 

    Corr[W(t),W(tτ)]=ρ τ  

    其中 0<ρ<1  是时滞1(即两事件间隔为1)的一阶自相关。
    对于来自连续过程 W=W 1 ,W n   上在时刻 T=t 1 ,,t n   上的n个观测点,则 W i   可描述为
    W i =μ+ρ (τ i ) (W (i1) μ)+ε i  
    其中 i1,,n,τ i =t i t (i1) ε i  N(0,σ 2 (1ρ (2τ i ) )) 
    论文中所给的 ε i   的方差感觉有错
    对转角速率 V t (t)  的分析过程与持久速率 V P   相同

  • Estimating irregular time-series parameters(估计不规则的时间序列参数)
    采用极大似然法估计参数 μ̃σ̃ρ  ̃

    μ̃=¯X 

    σ̃=S 

    ρ̃=argmax ρ L(ρW,T,μ̃,σ̃) 

    L(ρW,T,μ̃,σ̃)= n (i=1) f(W i |W (i1) ,τ i ,ρ,μ̃,σ̃) 

    f(W i W (i1) ) ε i  

  • Identifying structural shifts
    定义CP:
    在时间 0<t<T  上的一个连续随机过程 X(t)  ,定义参数集合 Θ(t)  ,在未知点处 T    发生变化

    Θ 1 ,0<t<=T   

    Θ(t)= 

    Θ 2 ,T  <t<=T 

    从连续过程 X(t)  在时间 T i   上选择一个时间序列 X i   。设 n  为第一区域的测量值,满足T n max(T i <T  ) ,则
    L(ΘX,T)= n (i=1) f(X i |X (i1) ,Θ 1 ) N (j=i+1) f(X j |X ( j1),Θ 2 ) 

    采用极大似然法估计下列参数
    ñ=argmax n L(ΘX,T) 

    μ̃ j =¯X j  

    σ̃ j =S j  

    ρ̃ j =argmax ρ L(ρX j ,T j ,μ̃ j ,σ̃ j ) 

    其中, j=12  ,表示所属的区域。称 T  =t n ̃  为极大似然变化点(MLCP)

  • Identifying models
    不同参数的变化对应于不同的行为解释。对于持久速率 V P   μ  的增加对应更快更有方向的移动,σ 的增加显示更多变的移动,高 ρ  显示更强的相关性移动。对于转角速率V t   μ  的增加显示更多转角,高ρ 显示更大的转角直径。
    在分析一个CP时,需要考虑8中可能的模型,记为M0-M7,其中M0指三个变量没有发生变化,M1,M2,M3指一个变量发生变化,M4,M5,M6指两个变量发生变化,M7指三个变量都发生变化。
    采用信息准则AIC和BIC选择模型。

    I A (X,T)=2nlog(L(ΘX,T))+2d 

    I B (X,T)=2nlog(L(ΘX,T))+dlog(n) 

    其中,d为M0-M7的参数个数,M0对应d=3,M7对应d=6(论文中感觉d的值不正确,如下图所示)

  • Simulation Study

  • Multiple change points
    考虑存在多个变化点(CP)的情况,对参数的估计是一个非平凡问题,比较复杂的部分是在一个复杂的过程中确定变化点的数目。论文中采用一个固定大小的窗口遍历整个时间序列,每个窗口中只包含一个变化点。完整的处理过程为:
    1. 选择窗口长度 30<=l<N 
    2. 在窗口中找到MLCP
    3. 根据参数 μσρ  ,使用BIC准则确定是否接受具有显著性变化
    4. 根据3的结果,记录行为变化点的位置和最终估计得参数值
    5. 移动窗口,重复以上步骤
Application to data: Northern fur seal
Discussion

BCPA不需要先验假设,可以检测出显著的行为变化,并以参数值的方式表示逐渐变化的情况。具有较强的鲁棒性,只要变化比噪声显著,该方法就可以从充满错误的数据中发现行为变化点,且对具有测量时间的不规律或者数据中存在间隙的情况下也适用。

BCPA中,需要对连续时间序列模型的假设进行检验,同时需要人工确定窗口大小,窗口越大,模型选择在辨别更小范围的行为变化所需的成本越大。
该方法提供了一个通用的、鲁棒性、高效的框架来研究时间上存在异质的自相关过程。

智慧政务:开启智慧城市新篇章 在当今数字化时代,智慧政务作为智慧城市建设的核心组成部分,正逐步成为提升政府治理能力和公共服务水平的关键力量。 面对传统政务模式中的信息孤岛、管理困难、安全威胁等诸多问题,智慧政务以其独特的优势和解决方案,为政府现代化转型开辟了新路径。 一、传统政务的困境 传统政务模式下,各部门间信息不互通,形成严重的信息孤岛现象,导致管理效率低下。 政府网站缺乏有效管理,信息更新缓慢,无法及时响应民众需求。 同时,安全威胁如黑客攻击和非法入侵频发,严重威胁政务信息安全。 此外,公务人员每日忙于单一、重复的审批任务,企业办事仍需奔波于多个部门之间,个人办证流程复杂且效率低下,这些问题迫切需要得到解决。 二、智慧政务的发展方向与优势 智慧政务通过资源开放、内部协调、决策精准化等手段,推动政府向更加透明、互动、高效的方向发展。 其发展阶段涵盖了从基本在线服务到流程和组织转型的全方位变革。 智慧政务应用深度广泛,包括统一的业务处理云平台、数据交换平台等,实现了政务流程的全面优化。 智慧政务的优势显著:首先,它大幅提高了行政效能,通过优化审批流程,缩短了审批周期,提升了服务质量。 其次,智慧政务促进了信息公开,增强了工作透明度,完善了监督考核机制。 此外,智慧政务还积极响应节能减排号召,实现无纸化办公,减少纸张及打印耗材的使用,降低了出行能耗。 三、智慧政务解决方案:云平台的崛起 云计算作为智慧政务的基础设施,以其资源共享、创新模式、降低成本、随需服务等特性,为智慧政务建设提供了强有力的技术支撑。 通过云平台,政府各部门能够更好地共享信息化基础资源,解决传统政务中基础设施使用率低、资源需求分散等问题。 同时,云计算带来的建设和服务模式创新,使政府信息化工作重点从资产管理转向服务管理,提高了政府运行效率。 四、智慧政务的应用模式与愿景 智慧政务的应用模式实现了从物理实体存在到网络虚拟方式的转变,政府组织结构也从金字塔型向网络型扁平化结构过渡。 这种转变使得政府能够跨越地理限制,实现7×24小时不间断服务。 智慧政务的愿景是构建全程电子化办公环境,待办事件及时推送,政务新闻通过APP及时发布,实现各种审批流程的一站式办理,企业所需政务信息及时推送。 总之,智慧政务作为智慧城市建设的钥匙,正以其独特的优势和解决方案,引领政府向更加高效、透明、互动的方向发展。 随着技术的不断进步和应用模式的不断创新,智慧政务的未来将更加光明,为构建智慧城市、提升民众生活质量作出更大贡献。
内容概要:本文围绕复杂威胁环境下的多无人机协同路径规划问题,提出了一种基于多段杜宾斯(Dubins)路径的协同策略,并提供了完整的Matlab代码实现。该研究重点解决在存在障碍物、禁飞区或其他威胁的环境中,多架无人机如何协同规划出满足动力学约束、避障要求且总体复杂威胁环境下的多无人机协同路径规划研究——基于多段杜宾斯(Dubins)路径的协同策略(Matlab代码实现)性能最优的安全路径。方法结合了Dubins曲线对无人机最小转弯半径等运动学限制的有效建模能力,通过多段路径拼接提升路径灵活性和适应性,并设计协同机制以避免无人机间的冲突,实现高效的任务执行。; 适合人群:具备一定编程基础,熟悉Matlab语言,对无人机路径规划、智能优化算法或自动化控制领域感兴趣的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于科研学习,理解多无人机协同路径规划的核心挑战与解决方案;②作为仿真平台,复现并验证基于Dubins路径的规划算法;③为实际无人机编队飞行、侦察、救援等应用场景提供算法设计与实现参考。; 阅读建议:建议读者结合文中提供的Matlab代码,逐步理解算法的实现逻辑,重点关注威胁环境建模、Dubins路径生成、多机协同避碰等关键环节,并可通过修改参数或场景进行扩展实验,深化对路径规划策略的理解与应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值