基于 LangChain 手工测试用例转 Web 自动化测试生成工具

在这里插入图片描述


一、简介

在传统编写 Web 自动化测试用例的过程中,基本都是需要测试工程师,根据功能测试用例转换为自动化测试的用例。市面上自动生成 Web 或 App 自动化测试用例的产品无非也都是通过录制的方式,获取操作人的行为操作,从而记录测试用例。整个过程类似于

在这里插入图片描述

但是通常录制出来的用例可用性、可维护性都不强,而且依然需要人手工介入录制的过程。

在 LLM 问世之后,我们便在探索,是否有第二种可能性,由大模型执行功能测试用例,生成自动化测试用例?

1、应用价值

测试工程师在编写用例的过程中,将操作步骤明确的表达出来。即可通过大模型将功能测试用例可以直接转为 Web 自动化测试用例。极大的节省了人力与资源。

二、实践演练<

### 百度AI测试用例生成工具概述 百度AI测试用例生成工具旨在利用人工智能技术简化软件测试流程中的测试用例设计环节。此类工具有助于提高效率并减少人为错误的发生率。具体到实现方式,可以借鉴基于LangChain手工测试用例Web自动化测试变的方法[^1]。 #### 工具功能特点 - **自然语言处理能力**:用户能够以自然语言形式提交待测场景或期望行为的文字描述,系统理解这些指令后自动构建相应的测试脚本。 - **快速响应机制**:当用户输入想要生成测试用例描述,并触发执行命令之后,在几秒钟内就能获得初步的结果反馈;一般情况下,单次请求大约能产出多个不同角度覆盖业务逻辑的案例集[^2]。 - **集成便捷性**:对于开发者而言,该类平台往往提供直观易操作的人机交互界面,比如新增专门用于启动智能化服务的功能按键来增强用户体验感[^3]。 #### 技术原理简介 为了达成上述目标,背后依赖的技术栈可能涉及但不限于: - 使用预训练的语言模型解析用户的意图; - 结合领域特定的知识库补充必要的上下文信息; - 应用强化学习算法优化探索策略从而找到更优解路径; - 输出结构化的代码片段作为最终产物供后续验证环境调用运行。 ```python # 示例Python伪代码展示如何模拟发起一次API调用来获取由AI生成的一组测试用例 import requests def get_ai_generated_test_cases(description, api_key="your_api_key"): url = "https://api.baidu.com/v1/testcase/generate" payload = { 'description': description, 'tool': 'web_automation' } headers = {'Authorization': f'Bearer {api_key}'} response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: return response.json()['testCases'] else: raise Exception('Failed to generate test cases') # 调用函数传入具体的业务场景描述字符串 generated_cases = get_ai_generated_test_cases("登录页面表单校验") print(generated_cases) ```
评论 74
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敲代码敲到头发茂密

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值