- 博客(764)
- 收藏
- 关注
原创 一文读懂Agent Skills:从概念到实践,让AI助手变身全能工具
Agent Skills是Claude发布的跨平台可移植性开放标准,本质是将个人或团队的SOP变成Agent可长期复用的"技能包"。通过发现、激活、执行三步工作,Skills实现"经验→自动化→复用",比临时性Prompt和连接型MCP更具优势。文章介绍了多个Agent Skills平台资源,并以Cursor为例演示了安装使用方法,帮助读者快速掌握这一热门AI技能。
2026-02-09 19:11:13
679
原创 小白也能学会!最直白的Agent Skills实战教程,大模型开发必备技能
文章介绍了Cursor编辑器中Agent Skills功能的实战教程,包括升级Cursor、创建Skill文档、自动创建项目目录和使用技能等。Skills本质上是统一规范的需求文档集合,能帮助AI编程工具更全面实现业务逻辑,减少后期改动。通过标准化技能文档,AI能从一开始就按照统一标准尽可能覆盖所有需要实现的逻辑,提高开发质量和效率。
2026-02-09 19:09:56
533
原创 Google Antigravity重磅更新!Agent Skills实现全平台通用,大模型开发迎来“App Store”时刻
文章介绍了Google AI IDE "Antigravity" 正式支持 Agent Skills。Skills 本质是指导AI执行任务的 Markdown 文档(SOP),实现了“一次编写,全平台通用”。经测试,Claude、Codex、Gemini 等主流平台对 Skills 的兼容性极佳。这标志着大模型开发门槛大幅降低,Agent 生态或将迎来类似 App Store 的爆发时刻。
2026-02-07 11:01:56
1163
原创 MemOS开源框架实战:构建基于Graph的记忆图谱,让AI具备长期记忆能力
MemOS是一款基于Graph的记忆开源项目,通过TreeTextMemory实现结构化记忆存储与关联。本文详细介绍了如何在LangChain1.x框架中集成MemOS的记忆图谱能力,包括构建带记忆的ChatBot、体验记忆的自动重组功能,以及通过Middleware机制实现无侵入式集成。这种架构让AI智能体具备长期记忆与知识积累能力,超越简单键值对记忆,支持更复杂的记忆上下文推理,为多Agent协作和企业级应用提供了强大记忆支持。
2026-02-07 10:52:16
320
原创 大模型AI Agent开源框架全攻略
这篇文章详细介绍了11个热门的大模型AI Agent开源框架,包括AutoGPT、Dify、LangChain等。这些框架涵盖了自主目标拆解、多智能体协作、低代码开发等多种应用场景。每个项目都有独特特点和适用场景,适合不同层次开发者。无论是初学者还是专业开发者,都能从中找到合适的AI Agent开发工具,快速上手大模型应用开发。
2026-02-06 10:21:21
518
原创 深入理解Transformer:大模型入门到精通的完整教程
本文提供全面的Transformer学习教程,包含五个章节:引言介绍Seq2Seq和注意力机制;简述Transformer结构;详细解析Encoder工作流程;深入讲解Decoder结构;最后通过机器翻译项目实战巩固理解。教程由浅入深,理论与实践结合,帮助读者全面掌握这一大模型核心技术,建议多次阅读以加深理解。
2026-02-06 10:20:28
373
原创 Skills与MCP协同工作指南:构建智能代理的黄金组合
本文深入探讨了Anthropic的Skills与MCP如何协同工作构建智能代理。MCP提供外部工具连接性,Skills提供工作流程逻辑和专业知识,两者结合可创建遵循特定流程、产生一致输出的智能系统。文章通过金融分析、会议准备等案例展示了实际应用,并提供了何时使用Skills与MCP的指导原则,帮助开发者构建更高效、更标准化的AI工作流程。
2026-01-31 18:24:14
900
原创 RAG核心技术:从基础到三大形态完全指南
RAG(检索增强生成)是为AI配备专属知识库和搜索引擎的技术,避免AI瞎编,提高答案准确性、时效性和可追溯性。RAG有三大核心形态:传统RAG(检索重排序后生成)、Graph RAG(基于知识图谱理解信息逻辑)和Agentic RAG(具有自主智能体,能拆解问题、调用工具)。落地RAG的关键在于匹配业务场景,建设高质量知识库,并规避测试和应用局限。
2026-01-31 18:23:24
1178
原创 LangGraph多智能体系统设计模式:主管架构与分层架构实战指南
本文详细介绍了LangGraph多智能体系统的两种核心架构模式:主管架构通过中央主管智能体管理多个专业智能体,适合结构化任务;分层架构引入团队层级概念,由顶层主管协调团队主管,有效解决了主管架构的扩展性问题。文章通过代码实例展示了两种架构的实现方式,帮助开发者构建更灵活、强大的多智能体应用,以应对复杂业务场景。
2026-01-30 19:11:32
856
原创 LangGraph源码分析 - AI Agent如何智能处理用户输入,从入门到精通
文章详细解析了Open Deep Research项目中用户澄清阶段的实现机制。通过分析clarify_with_user函数,解释了配置检查、模型准备、澄清分析和流程路由四个步骤的工作原理,以及State中messages字段的流转和更新过程。同时介绍了结构化输出模型和提示词设计,帮助读者理解AI Agent如何智能处理用户输入,确保研究方向的准确性。
2026-01-30 19:10:04
1009
原创 两天时间,我用AI打造自动挖漏洞的代码审计神器!从零到一实现大模型辅助安全审计完整方案
作者利用两天时间,通过CodeBuddy创建了一套代码审计Skill,结合Claude LSP技术实现了AI自动安全审计。该方案包含12个模块、5个阶段,支持从HTTP入口开始的双向追踪漏洞分析,可生成完整调用链和PoC。与传统工具相比,此方案能发现技术漏洞和业务逻辑漏洞,误报率更低,支持攻击链分析。文章详细分享了从概念理解到实现的全过程,展示了"训练AI写代码"的创新方法。
2026-01-29 18:55:14
1178
原创 告别AI编程“半途而废“:Ralph Loop让大模型持续迭代直至任务完成
Ralph Loop是一种解决AI编程助手过早退出问题的方法,通过Stop Hook拦截机制让AI持续迭代直至任务真正完成。其核心是循环使用同一提示,结合文件系统和Git历史形成自我参照反馈。该方法不依赖AI主观判断,而是通过外部验证确保任务完成。文章详细介绍了实现机制、适用场景、最佳实践及框架支持,帮助开发者构建高效AI编程工作流。
2026-01-29 18:53:43
963
原创 中国大模型行业深度解析:技术、应用与未来发展
中国大模型行业经历了从基础研究到快速发展的三个阶段,目前已形成基础层、模型层和应用层完整产业链。商业化进程加速,百度文心一言、讯飞星火、阿里通义千问等产品在多领域应用,2023年市场规模增长率超100%。行业竞争激烈,形成互联网公司、AI公司、学术机构及专家团队四大派系。预计到2030年,中国大模型市场规模将超2200亿元,年复合增速40%以上,预测大模型、决策大模型和具身智能大模型将成为未来风口。
2026-01-28 17:58:07
642
原创 大模型技术发展全景图:从符号主义到多模态智能的演进之路
本文系统梳理了大模型技术发展历程,从1950年代符号主义开始,经历统计机器学习、神经网络革命,到2017年Transformer架构突破,再到预训练范式确立、规模扩张与多模态融合。文章详细分析了架构演进逻辑、训练技术突破及能力跃迁轨迹,并探讨当前挑战与未来方向,为理解大模型技术发展提供了全面视角。
2026-01-28 17:56:55
769
原创 从零开始构建AI Agent:手把手带你成为智能体开发者
Datawhale社区推出的"Hello-Agents"项目是一个系统性AI智能体学习教程,旨在帮助读者从零开始构建AI Native Agent。教程结合理论与实战,使用自研HelloAgents框架,深入讲解智能体核心原理、架构和经典范式,让读者从大模型使用者蜕变为智能体系统构建者。项目提供在线阅读和PDF下载,适合有Python基础的开发者学习。
2026-01-24 19:03:23
765
原创 026最佳实践:个人AI知识库构建方案
文章分享2026年个人AI知识库最优解:"自产内容存Obsidian,外部信息用NotebookLM"。Obsidian确保数据主权并支持AI集成,NotebookLM提供强大性能和深度研究功能。作者通过这套组合实现自动化工作流,既保证核心资产安全,又享受顶级AI处理效能,打造出"前店后厂"的高效知识管理体系。
2026-01-24 19:02:22
576
原创 程序员必学:Transformer与大模型技术深度解析
本文详细解析了大模型核心技术Transformer架构,涵盖Embedding层、Transformer Block、Attention机制原理与几何解释、KV Cache应用,以及DeepSeek-V3的创新MLA和MoE技术。通过可视化工具和论文解读,帮助读者深入理解大模型工作原理,掌握从基础到前沿的完整技术体系。
2026-01-22 18:45:13
757
原创 大模型RAG技术实战指南:解决大模型知识盲区的终极方案
RAG技术解决了大模型在领域知识、时效性、数据安全和幻觉问题上的局限。文章系统介绍了RAG的核心概念、标准流程和各类分块策略,详细讲解了检索优化、提示工程和效果评估方法。RAG本质上是让大模型携带知识库工作的工程方案,通过文档处理、嵌入模型选择、检索策略和提示设计等工程决策,构建起完整的知识问答系统,是当前大模型应用开发的重要方向。
2026-01-22 18:44:34
572
原创 小白也能学会:为AI Agent安装MemMachine“大脑“,实现真正的长期记忆
MemMachine为AI Agent提供双层记忆系统(剧情脑和档案脑),解决LLM"金鱼记忆"问题。教程详述其安装配置(支持OpenAI和阿里云API),使AI能持久化记忆用户信息,适用于客服、陪伴型AI等场景,让AI真正"了解你、记得你"。
2026-01-14 16:03:04
731
原创 一文讲清楚:大模型Post-Training的完整技术版图
很多人学大模型,学到后面都会卡在一个地方:**模型已经预训练完了,接下来还能干什么?**答案只有一个词:**Post-Training(模型后训练)**。你现在用到的 ChatGPT、通义千问、DeepSeek、Claude,本质上都不是“裸的预训练模型”,而是一整套 **Post-Training 技术堆出来的结果**。今天这篇文章,我结合 **2025 年 ACL 发布的一篇 Post-Training Survey**,用一套**工程视角 + 面试友好**的方式,把大模型后训练的完整体
2026-01-14 16:01:58
667
原创 RAG技术2025年全面复盘:从检索增强到企业级上下文引擎
文章回顾2025年RAG技术的发展,指出其虽面临争议但企业级地位更加稳固。RAG正从"检索增强生成"演进为"上下文引擎",通过TreeRAG、GraphRAG等架构优化解决语义碎片化问题。在AI Agent时代,RAG作为数据底座的重要性凸显,未来将向多模态支持、自动化上下文组装方向发展,成为企业智能化基础设施的关键组件。
2026-01-13 15:20:51
780
原创 零代码微调大模型!LLaMA-Factory Online让定制专属模型像打开浏览器一样简单
文章介绍了如何让大模型更好地适配业务需求,强调需同时运用Prompt工程、RAG和微调三种技术。应先通过Prompt和RAG测试评估模型表现,当效果接近上限时再考虑微调。微调能让模型真正理解业务逻辑和风格,但传统微调门槛高。LLaMA-Factory Online平台提供了一站式解决方案,无需编写代码即可完成模型微调,帮助团队将业务经验转化为"懂你"的专属AI模型。
2026-01-13 15:19:48
613
原创 企业级智能问答系统踩坑实录:RAG老是达不到效果的优化方案
由于大模型技术的复杂性,再加上不同业务场景的特殊需求,导致大模型应用的开发难度很大;但大模型应用开发最难的不是做出来而是要做好。这次还以作者手里的智能问答项目来说,记录一下智能问答系统的踩坑记录,从怎么都达不到想要的效果,到能够很好的满足业务场景。
2026-01-07 18:00:57
928
原创 2025年RAG技术全面解析:从检索增强生成到上下文引擎的演进 | 程序员必读指南
2025年RAG技术在争议中演进,从知识库升级为企业级数据底座。面对"易用难精"挑战,TreeRAG、GraphRAG等优化方案涌现,与长上下文技术协同发展。随着AI Agent兴起,RAG演变为Context Engine,成为支撑Agent的核心基础设施。多模态RAG虽面临工程化挑战,但未来发展潜力巨大。RAG正从检索增强生成升维为智能检索为核心的上下文引擎,成为企业智能化建设的核心组件。
2026-01-07 17:59:09
979
原创 从零掌握大模型:计算机学习的范式革命与实战指南
本文全面解析大型语言模型(LLM)的革命性转变,从指令编程到学习型智能的范式飞跃。详解LLM发展历程、工作原理、训练需求及微调技术,分析其优势与局限。探讨LLM在多领域的应用潜力,以及知识蒸馏、RAG、多模态等前沿方向。无论AI小白还是程序员,本文都提供了理解LLM必备的系统知识框架,助你在AI时代把握先机。
2025-12-31 18:17:16
787
原创 一文读懂大模型知识建模的双层架构:数据层与模式层详解
知识建模分为数据层和模式层。数据层以图数据库存储事实,通过"实体-关系-实体"表达,负责知识提取和融合。模式层通过本体规范实体、关系和概念,负责知识推理和本体建模。知识推理从已有数据建立新关联,拓展知识网络;本体建模以形式化方式定义概念间联系。示例图谱中,虚线以上是模式层,虚线以下是数据层。
2025-12-31 18:15:42
1032
原创 收藏级大模型底层逻辑详解:10分钟让小白也能看懂AI如何思考
本文通俗解析大语言模型(LLM)工作原理,揭示AI本质是通过海量数据训练的"超级概率计算器",核心是预测下一个Token。大模型经历预训练(海量阅读)、微调(学会对话)、推理(实战应用)三阶段,结合向量嵌入理解语义、Transformer架构分析上下文,实现看似智能的文本生成。理解这些原理有助于把握AI能力边界,更好地使用AI工具。
2025-12-27 18:29:39
978
原创 非技术人员免费使用Gemini 3的2个最佳入口,小白也能轻松上手
文章为非技术人员提供了免费使用Gemini 3模型的两种最佳入口:网页版/App适合尝鲜但有使用限制;Google AI Studio完全免费,提供满血版模型、超长上下文和多模态支持,但需注意数据安全。此外,学生党可通过edu邮箱享受一年免费Gemini AI Pro会员。文章强调AI应作为解决问题的工具,而非学习负担。
2025-12-27 18:28:47
796
原创 大模型可解释性突破:99.9%权重清零,内部思维全透明,小白必学收藏!
OpenAI开源Circuit-Sparsity模型,通过强制99.9%权重为零,解决了大模型可解释性问题。该技术使模型内部形成紧凑可读的"电路",规模比传统模型小16倍,大幅提升AI思维解读难度。尽管运算速度慢100-1000倍,但OpenAI提出"桥梁网络"方案,可将稀疏模型的可解释性映射回密集模型。这标志着AI可解释性领域的重要突破,为理解AI决策机制提供了新路径。
2025-12-23 15:42:24
1885
1
原创 无需GPU!用LlamaIndex的Adapter技术轻松微调嵌入模型,普通电脑也能打造专业领域专属Embedding!
文章介绍了使用LlamaIndex的Adapter适配器技术微调嵌入模型的方法。该方法通过在预训练模型上添加轻量级适配器层,只训练适配器参数而冻结原始模型,显著降低了微调所需的计算资源。普通CPU或低配GPU即可完成训练,只需保存几MB的适配器参数。文章详细讲解了数据准备、模型微调、效果评估等步骤,并展示了如何使用单层或两层神经网络Adapter。实验表明,这种方法能在特定领域显著提升检索效果,同时保持高效率和低成本。
2025-12-23 15:41:03
674
原创 SpecFormer:基于位置无关参数的推测解码新架构,提升LLM推理效率
SpecFormer是一种新型推测解码架构,通过基于双向注意力、参数位置无关的设计,解决了传统自回归草稿模型在连续批处理系统中效率受限的问题。该架构结合上下文因果注意力和草稿双向注意力,并采用高效的分组RMS归一化、自蒸馏训练策略和批内梯度累积优化方法。实验表明,SpecFormer在各种模型规模下均适用,尤其在较小模型上展现出显著的加速优势,以更低的训练需求和计算开销为LLM推理可扩展性树立了新标准。
2025-12-20 17:29:30
1284
原创 2024年14款大模型深度测评:程序员必备指南,小白入门首选
该文对14款主流大模型进行了全面测评,包括头脑风暴、长文本处理、周报撰写、做菜规划、搜索和图像识别等场景。结果显示海外模型整体表现更优,但国产模型差距正在缩小。文章指出用户使用心态从执行任务转向寻求建议,并提供了交叉验证、长文本分段等实用技巧,为程序员和小白选择适合的大模型提供了参考。
2025-12-20 17:28:08
1368
原创 Open Notebook:打造私有化AI助手,16种模型本地部署教程
本文介绍了Google的NotebookLM及其开源替代品Open Notebook。该工具支持16种AI模型,可在本地部署,保障数据隐私,支持多种格式导入,具备灵活权限控制和多角色语音功能。文章提供详细Docker部署方法,对比两个工具的优缺点,为追求数据安全和离线运行需求的用户提供了理想选择。
2025-12-19 19:04:54
1422
原创 谷歌开源computer-use-preview:AI Agent如何操控电脑?架构设计与实战解析
文章介绍谷歌开源的computer-use-preview项目,这是一个让AI直接操控电脑的Agent框架。它采用三层架构:BrowserAgent智能层、Computer接口抽象层和Playwright/Browserbase执行层。主要技术特点包括坐标归一化、截图滑动窗口和新页面劫持。该框架成本较高(每步约$0.002+),速度较慢(单步3-6秒),目前仅适配Chrome,面临页面加载完整性、弹窗广告等挑战。
2025-12-19 19:04:01
1244
原创 Agentic AI崛起——从LLM到自主智能体的技术革命
本文系统梳理了从LLM到Agentic AI的技术演进历程,从Agent概念溯源出发,分析了单智能体的局限性与多智能体的协作优势,阐述了Agentic AI的核心特征与本质内涵。文章指出,技术组合带来的能力涌现是推动AI从被动对话工具向主动智能伙伴进化的关键,Agentic AI作为通向AGI的重要前站,正在重塑人类与智能系统的协作范式。
2025-12-18 18:32:29
836
原创 两大神器助你一键本地部署大模型,小白也能秒变专家
文章介绍了本地部署大模型的四大必要性:数据隐私安全、摆脱网络依赖、降低长期成本、个性化定制。推荐了两款工具:DS本地部署大师,提供图形化界面和内置模型,一键安装使用;聪明灵犀,支持硬件监控、参数调优等功能,适合有技术基础的用户。这两款工具能有效帮助企业和个人用户实现大模型本地部署,提高办公效率。
2025-12-18 18:31:24
762
原创 智能体完全指南:从理论到实践,适合小白和程序员的AI学习宝典
本文系统介绍了智能体的定义、类型及运行原理,详细阐述了从传统智能体到大语言模型驱动智能体的演进过程。通过PEAS模型和智能体循环解析了智能体的工作机制,并以智能旅行助手为例展示了实践方法。文章还探讨了智能体作为开发工具和自主协作者的两种应用模式,以及与Workflow的区别,强调了智能体的自主决策能力,为读者构建了完整的智能体知识框架。
2025-12-16 18:47:09
1053
原创 提示词工程解锁大模型潜力的终极沟通术
提示词工程是提升AI交互效果的关键技术,主要包含User Prompt和System Prompt两类。User Prompt是用户即时指令,需遵循清晰表达、角色设定和示例提供等原则;System Prompt则是全局性指令集,定义AI角色和行为准则。通过RTF框架结构化提示词,可显著提高AI输出质量。提示词工程需要持续迭代和版本管理,没有完美提示词,只有能解决实际问题的提示词才是好的提示词,能让AI从"听不懂"变成"得心应手"的智能助手。
2025-12-16 18:44:04
803
原创 企业级AI助手开发实战:从入门到精通的完整教程
文章介绍了一个基于钉钉平台的AI助手开源项目,整合了DeepSeek-V3大模型、Qdrant向量数据库、Redis记忆系统和LangGraph工具框架。通过智能对话、情感分析、意图识别、知识库检索和多工具调度等核心功能,帮助开发者掌握大模型深度集成、向量数据库构建、对话记忆管理等关键技术。项目提供完整开发指南和容器化部署方案,助力学习者从基础入门到独立完成企业级AI应用开发。
2025-12-12 18:19:04
1412
原创 大模型RAG技术家族全解析:从传统RAG到GraphRAG、MultiHop-RAG等前沿优化方案
文章全面介绍了RAG检索增强生成技术的演进与多种优化方案。详细阐述了传统RAG的基本原理及局限性,并深入剖析了GraphRAG(整合知识图谱提升检索准确性)、MultiHop-RAG(解决多步推理复杂问题)、HyDE(通过假设文档改进检索效果)和RAGFusion(融合多源文档提升响应质量)等关键技术的工作原理、应用场景和实际价值,为开发者构建高效大模型应用提供了系统性指导。
2025-12-12 18:18:18
1242
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅