自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(383)
  • 收藏
  • 关注

原创 第一批用大模型的程序员,已经升职加薪了...

就在前段时间的两会上,“人工智能”再次被提及,并成为国家战略的焦点。这一举措预示着在接下来的十年到十五年里,人工智能将获得巨大的发展红利。同时意味着,技术革命正在从逐步迈进,。毫无疑问,AI 应用型工程师一定是未来最紧俏的岗位。在过去的一年多时间里,我持续关注着大模型的发展趋势,并且尽可能地进行了尝试和实践。在学习的一过程中,也遭遇了不少问题,可能你也碰到过,比如:· 小团队如何解决 GPU 与存储空间等资源问题?· 如何在众多模型中选择合适自己领域的模型并进行优化?

2024-09-16 09:00:00 641

原创 29岁程序员逆袭记:从负债累累到月入130万的AI创业之路

Jozef 的成功,证明了现在确实是创业的黄金时代,特别是在 AI 领域。他用自己的经历告诉我们:“创办一家价值数百万美元的公司从未如此容易。机会无处不在,成本低得可笑。不要错过这个机会!从他身上我们可以得到几点启发:1.现在是创办在线业务的最佳时机,特别是在 AI 领域。开发工具、教程和初期托管都是免费的。2.你不需要融资就能创办公司。Jozef 只用了 250 美元就开始了他的创业之旅。3.如果产品失败,要么是产品本身有问题,要么是市场不合适。要学会快速调整。所以,各位国内的码农,还在等什么。

2024-09-16 08:00:00 624

原创 第一批用大模型的程序员,已经碾压同事了...

自 ChatGPT 面世以来,市场上一直用“iPhone 时刻”“划时代”“工业革命”等关键词来形容 AI 领域的飞速进展。如今,AI 大模型的战争已经开启大卷特卷模式。OpenAI 炸裂推出 GPT-4o,科幻电影照进现实,不仅免费可用,能力更是横跨听图片、看图片、说图片,丝滑流畅毫无延迟,就像在打一个视频电话。紧接着谷歌就在开发者大会上官宣 Gemini、Google 搜索等 9 项重大内容!国内也不遑多让,火山引擎发布了字节跳动研发的豆包大模型家族,正式开启对外服务。

2024-09-16 07:00:00 605

原创 【转型必看】Java到AI,程序员的逆袭秘籍!

随着技术的不断进步,人工智能(AI)已经成为当今科技领域最热门的话题之一。许多开发者开始考虑从传统的软件开发领域,如Java,转向人工智能领域,今天我和大家一起来探讨Java开发者是否可以转型到人工智能,转型的优势,薪资对比,以及转型所需的知识和学习路线等。Java作为一种广泛使用的编程语言,拥有强大的生态系统和丰富的库支持。许多人工智能框架和库,如Apache Mahout和Deeplearning4j,都是基于Java开发的。因此,Java开发者具备转型到人工智能领域的基础。

2024-09-15 10:00:00 515

原创 实操了 AI 大模型项目落地, 程序员成功转变为 AI 大模型工程师

根据《2024 年全球人工智能行业报告》最新的数据显示,全球 AI 市场预计将以每年超过 40% 的速度增长,到 2030 年市值将达到数万亿美元,这也是预示着在接下来的十年到十五年里,人工智能将获得巨大的发展红利。在过去的一年多时间里,我持续关注着大模型的发展趋势,并且尽可能地进行了尝试和实践。在学习的过程中,遭遇了不少问题,可能你也碰到过,比如:· 如何在众多模型中选择合适自己领域的模型并进行优化?· 如何在 AI 时代找到自己的位置,并实现技术的真正落地?

2024-09-15 08:00:00 384

原创 人人都在AI的时代,Java程序员不应该被落下

随着人工智能技术的迅猛发展,大模型(Large Language Models, LLMs)正逐渐成为IT行业的热点。对于Java程序员来说,转行大模型领域不仅意味着新的机遇,也面临着诸多挑战。本文将探讨Java程序员转行大模型的机遇与挑战,以及如何顺利实现转型。技术升级:大模型领域的技术不断迭代,Java程序员可以通过学习大模型相关技术,提升自己的技术水平,实现职业成长。市场需求:随着AI技术的广泛应用,大模型领域的市场需求不断增长,为Java程序员提供了丰富的就业机会。

2024-09-15 07:00:00 1144

原创 如何让大模型更好地进行场景落地?

自ChatGPT模型问世后,在全球范围内掀起了AI新浪潮。有很多企业和高校也随之开源了一些效果优异的大模型,例如:Qwen系列模型、MiniCPM序列模型、Yi系列模型、ChatGLM系列模型、Llama系列模型、Baichuan系列模型、Deepseek系列模型、Moss模型等。图片来自:A Survey of Large Language Models并且在去年的一整年中,大多数人都在做底座通用大模型的搭建、垂直领域大模型预训练或微调等工作。

2024-09-14 14:25:55 561

原创 神书《从零构建大模型》分享,尚未发布,GitHub标星22k!!

从零构建大模型》是一本即将于今年10月底发布的书籍,github已经吸引了惊人的21.7k标星!作者是威斯康星大学麦迪逊分校的终身教授,在GitHub、油管、X上拥有大量粉丝,是一位真正的大佬。在本书中,读者将从内到外了解 LLM 的工作原理。在这本富有洞察力的书中,畅销书作家 Sebastian Raschka 将指导读者逐步创建自己的 LLM,并用清晰的文本、图表和示例解释每个阶段。读者将从最初的设计和创建到在通用语料库上进行预训练,再到针对特定任务进行微调。

2024-09-14 14:22:11 730

原创 豆瓣评分7.9!AI大模型时代利器:LangChain入门指南

2023年,LLM(大语言模型)井喷式爆发,尤其是GPT-4问世,一石激起千层浪,影响了整个人工智能领域,每个开发者都被“裹挟”着进入了 LLM 应用开发时代。在这样的大背景下,LangChain 这个以 LLM 为核心的开发框架应运而生,进一步推动了这一领域的创新和发展。LangChain 不仅可以用于开发聊天机器人,还能构建智能问答系统等多种应用,这马上引起了广大技术爱好者和开发者的关注。

2024-09-14 14:20:38 676

原创 大模型时代,程序员如何实现自我成长?

Inflection AI 的 Pi 是目前使用体感最好,如果说我将 ChatGPT 当作工具人,那 Pi 就是一个善解人意的小伙伴,优先于人的设计理念,相比其他服务于生产力、搜索或解答问题的 AI,可以放心将 Pi 视作一个具有创造力的教练、朋友或者是一个“发泄情绪”的对象,当然有类似定位的还有致力于让每个人都可定制自己的个性化 AI 的 Character.ai,不过靠提示词调教出来的虚拟角色稳定性堪忧,但是以这个项目作为入口,收集海量高质量交互数据,具备构建出体验超过 Pi 的大模型潜力。

2024-09-14 14:18:43 1393

原创 吴恩达&open AI联合推出《大模型通关指南》免费pdf分享,手把手教你掌握大模型技术!

LLM(Large Language Models)正在逐步改变人们的生活,对于开发者来说,如何利用LLM提供的API快速、便捷地开发具备更强大能力、集成LLM的应用程序,以实现更新颖、更实用的功能,是一项急需学习的重要技能。吴恩达老师与OpenAI合作推出的大模型系列教程,从大模型时代开发者的基础技能出发,深入浅出地介绍了如何基于大模型API和LangChain架构快速开发结合大模型强大能力的应用。

2024-09-13 21:08:12 615

原创 内行人都在学的大模型黑书 外网爆火的LLM应用手册来了!

Transformer 是工业化、同质化的后深度学习模型,其设计目标是能够在高性能计算机(超级计算机)上以并行方式进行计算。通过同质化,一个Transformer 模型可以执行各种任务,而不需要微调。Transformer 使用数十亿参数在数十亿条原始未标注数据上进行自监督学习。这些后深度学习架构称为基础模型。基础模型Transformer 是始于 2015年的第四次工业革命的一部分(通过机器-机器自动化将万物互联)。

2024-09-13 21:07:24 700

原创 大模型在教育领域典型应用场景的探究与展望

目前,大模型在教育领域的应用主要体现在个性化学习助手、智能问答系统、内容生成与创作辅助、智能写作评估、跨语言学习支持、数学解题辅助等几个方面。大模型技术在教育领域凭借卓越的数据处理能力和深度学习技术,极大推动了教育质量的提升与教育公平的实现。在构建与优化大模型的过程中,教育数据能够帮助我们更精准地理解教育现象,更有质量地辅助教学。教育数据涵盖广泛,包括但不限于学生的基本信息、学习行为数据、学业成绩数据、教师的教学反馈、课程内容以及教育资源使用情况等,这些数据可以根据不同的维度进行分级分类。

2024-09-13 21:06:37 989

原创 大模型在教育领域典型应用场景的探究与展望

目前,大模型在教育领域的应用主要体现在个性化学习助手、智能问答系统、内容生成与创作辅助、智能写作评估、跨语言学习支持、数学解题辅助等几个方面。大模型技术在教育领域凭借卓越的数据处理能力和深度学习技术,极大推动了教育质量的提升与教育公平的实现。在构建与优化大模型的过程中,教育数据能够帮助我们更精准地理解教育现象,更有质量地辅助教学。教育数据涵盖广泛,包括但不限于学生的基本信息、学习行为数据、学业成绩数据、教师的教学反馈、课程内容以及教育资源使用情况等,这些数据可以根据不同的维度进行分级分类。

2024-09-09 12:00:38 1694

原创 大模型在研发运营领域的应用

大模型在研发运营领域的应用正日益广泛,它们通过人工智能技术显著提升了研发效率和运营流程的智能化。这些应用包括辅助编程,自动化测试,需求分析与管理,设计文档生成,知识管理,研发流程优化,个性化推荐,多语言支持,以及模型训练与优化。此外,大模型还有助于安全性和隐私保护,在跨领域应用中展现出其通用性。特别是在电信运营商领域,大模型的应用已经扩展到网络流量分析、故障预测和资源优化,大幅提升了网络运营的效率。随着技术的不断进步,大模型在研发运营领域的应用将更加深入,推动企业实现智能化转型。

2024-09-09 11:59:54 925

原创 LLM (大模型)评估框架知多少?

Arthur Bench 是一个开源的评估工具,用于比较生成文本模型 (LLM) 的性能。它可以用于评估不同 LLM 模型、提示和超参数,并提供有关 LLM 在各种任务上的性能的详细报告。Arthur Bench 的主要功能包括:1、比较不同 LLM 模型:Arthur Bench 可以用于比较不同 LLM 模型的性能,包括来自不同供应商的模型、不同版本的模型以及使用不同训练数据集的模型。2、评估提示:Arthur Bench 可以用于评估不同提示对 LLM 性能的影响。

2024-09-09 11:59:09 1083

原创 想从事大模型?一大波工作岗位等你选!

技术类岗位您可从事:算法工程师,研发工程师。管理类岗位您可从事:AI项目经理、AI产品经理、AI销售、AI解决方案。01技术类岗位大模型算法工程师的职位通常要求求职者具备以下几方面的能力和经验。通用技能:通常要求硕士及以上学历,专业领域涉及自然语言处理、机器学习、深度学习、计算机视觉、人工智能等相关领域。团队协作:具备良好的团队合作精神和沟通能力,能够积极参与项目的讨论和决策。专业技能编程技能:需要具备优秀的编程能力,熟悉Python、C++等编程语言。

2024-09-09 11:58:31 1221

原创 智能新时代:中国AI大模型的产业发展

AI大模型作为智能新时代的核心驱动力,正在深刻影响着我们的生产和生活。中国在这一领域的快速发展,不仅展现了国家的战略眼光和科技实力,更为全球AI产业的发展贡献了中国智慧和中国方案。随着技术的不断进步和应用的不断深入,我们有理由相信,AI大模型将开启一个更加智能、便捷和美好的未来。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。

2024-09-09 11:57:43 1488

原创 大模型应用的四个关键方向

未来大型模型应用将沿着四个关键方向发展:AIGC(内容生成)、Copilot(智能助手)、Insight(知识洞察)、Agent(数字代理)。如下所示:1.AIGC(内容生成):内容生成是生成式 AI 创造力的核心,包括文本、图像、视频、代码、3D 模型等。文本生成广泛应用于教育、法律和对话业务;图像、视频和 3D 则在营销、影视创作和游戏等领域得到应用。

2024-09-09 11:57:00 619

原创 大模型发展方向

近年来,人工智能技术的飞速发展,特别是大模型技术的崛起,为全球科技产业带来了前所未有的变革。大模型,以其强大的推理能力、创意生成能力和情绪智能,正在逐步成为推动社会经济发展的核心力量。本文将从技术、应用、社会等多个维度,深入探讨大模型未来的发展方向。

2024-09-09 11:56:27 911

原创 大模型LLM微调技术方法paper汇总!

随着AI技术的发展,大型预训练模型在图像识别、自然语言处理等领域表现出色,不过为了使其适应特定的任务和数据集,这些模型通常需要针对特定应用进行微调。今天就特意整理了12篇大模型LLM微调技术方法paper分享给大家,提供了对于LLM在不同场景下进行高效微调的深入分析、实践经验和技术突破,大家可以学习一下!

2024-09-09 11:55:55 821

原创 AI 大模型催生的新职业,提示词工程师是什么?

当谈起提示词工程师时,我们实际上想谈论什么?我们谈论的是AI领域的一个新兴职业,是一种全新的工作方式和思维模式。更重要的是,我们也在探讨一个更广泛的社会话题:随着AI技术的不断发展,未来职业还将如何演变?人类工作者将如何与智能系统协作?我们如何确保技术的发展能够符合伦理标准,促进社会的可持续发展?

2024-09-05 15:59:50 1517

原创 每一个企业,都值得拥有自己专属的AI大模型

大模型技术的发展日新月异,模型参数规模越做越大,能处理的文本长度、多模态融合等方面也在快速演进。然而,如何将这些大模型的潜力在企业中落地应用,仍然是业界面临的一大挑战。企业业务场景千差万别,大模型必须经过针对性的训练和微调,才能有效适应不同企业的需求和业务流程。面对这些挑战,业界一直在探索各种解决方案,但尚未形成统一的最佳实践。在这一背景下,星环科技作为行业的先行者,积极探索大模型在企业中的应用路径。

2024-09-05 15:59:06 461

原创 初学者怎么入门大语言模型开发?

Prompt Engineering 涉及为大型语言模型设计有效的输入(Prompts),以引导模型生成所需的输出。这个过程不仅需要精确表达问题或需求,而且要格式化输出以适应特定应用。

2024-09-05 15:58:33 908

原创 基于知识图谱的个人知识库探索

千万不要小看知识图谱这根细线,谷歌搜索正是有赖于知识图谱技术的加持,搜索结果又快又准。知识图谱[4][5](KG, Knowledge Graph)是一种结构化的语义知识库,用于描述物理世界中的概念及其相互关系。它通过将复杂的数据转化为简单、清晰的“实体-关系-实体”三元组,来实现知识的快速响应和推理。例如,“中国-首都-北京”就是一个简单的三元组,其中“中国”和“北京”是实体,“首都”是它们之间的关系。知识图谱被广泛应用于智能搜索、智能问答、个性化推荐、情报分析和反欺诈等领域。

2024-09-05 15:57:38 834

原创 从零开始训练大模型教程

ChatGPT面世以来,各种大模型相继出现。那么大模型到底是如何训练的呢,在这篇文章中,我们将尽可能详细地梳理一个完整的 LLM 训练流程,包括模型预训练(Pretrain)、Tokenizer 训练、指令微调(Instruction Tuning)等环节。

2024-09-05 15:55:53 1180

原创 想成为互联网大厂算法工程师,得具备哪些条件?

对求职者来说,能成为一名大厂的算法工程师,无疑是职业生涯的巅峰。毕竟,互联网大不同厂工种薪资排序,大体是算法>工程>产品>运营>其他,同职级的员工,算法的薪水可能是运营人员的一倍,甚至还要高。目前,主流互联网大厂的算法岗位一般有搜索、广告、推荐(统称搜广推)算法;NLP(自然语言处理)/CV(计算机视觉)多模态识别算法;

2024-09-02 22:08:21 1253

原创 使用大模型提效程序员工作

通过在接手其他语言的项目中使用大模型、生成脚本辅助日志查询、根据接口文档使用大模型直接生成Java Bean代码以及学习新技术这四个场景的实践,我们可以更快地理解代码、更快地查找线上问题,以及减少编码时间。比如:你可以输入一段 Lua 脚本,询问大模型,这段脚本的意思,还可以让它详细解释每行代码的意思,让我们更快接手一个我们不熟悉编程语言写的项目。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。但使用大模型仍然能够大大提升我们学习新技术的效率。

2024-09-02 22:07:42 1020

原创 AI大模型没那么神秘,3个超简单秘诀让你轻松上手!

以上就是,超简单,但是超好用的三个入门级小窍门啦!简单到可以随学随用,赶紧用起来吧!遇到什么小麻烦,不用急着找人,先来问问大模型吧!

2024-09-02 22:07:08 668

原创 什么是大模型?(超详细)大模型从入门到精通,看这一篇就够了

大模型是指具有数千万甚至数亿参数的深度学习模型。近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果,如自然语言处理,图片生成,工业数字化等。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。大模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型采用预训练+微调的训练模式,在大规模数据上进行训练后,能快速适应一系列下游任务的模型。

2024-09-02 22:06:31 1243

原创 AI大模型全解析:带你深入了解这个技术新宠

引 言近年来,人工智能(AI)大模型在计算机科学领域引起了广泛的兴趣和关注。这些模型以其庞大的参数规模和卓越的性能,在各种领域展现了巨大的潜力。本论文探讨AI大模型的定义、使用方法、发展历程、主要内容、优势以及当前最广泛的应用。一、AI大模型是什么?AI大模型是指具有大量参数和复杂结构的人工智能模型。这些模型通过深度学习技术,能够从大规模数据中学习并提取复杂的模式和规律。

2024-08-27 16:00:34 773

原创 一文带你了解大模型,究竟什么是大模型?

近年来,人工智能领域掀起了一股"大模型"热潮。所谓大模型,指的是拥有数十亿甚至数千亿参数的机器学习模型。这些模型从海量的训练数据中学习到了丰富的知识和特征,具有强大的学习和泛化能力。大模型之所以引起广泛关注,主要有以下几个显著特点。

2024-08-27 15:58:29 826

原创 AI大模型在智慧城市11个行业的应用场景

AI大模型在智慧城市11个行业的应用场景‍‍‍人工智能是当今科技领域最前沿的课题,更是新一轮科技革命的重要代表之一。从AlphaGo Zero通过自我学习碾压“AI前辈”AlphaGo,到百度智能无人汽车成功上路、苹果手机开启新的刷脸认证方式……而最近,一款名为ChatGPT的人工智能技术驱动的自然语言处理(NLP)工具火爆全球,自2022年11月30日上线至今,短短两个月内,ChatGPT便获得1亿月度活跃用户,成为史上增长最快的面向消费者的应用。

2024-08-27 15:53:12 1191

原创 3分钟教你搞懂人工智能大模型的训练过程

大家好啊,之前有小伙伴私信我,想了解下大模型比如 chatGPT 是如何进行训练的。和他们聊了一下,发现有一个点一直在困惑着大家,那就是——大模型的训练是无监督学习还是有监督学习?在大模型训练过程中,数据的标签是什么?如何计算损失然后进行反向传播的呢?今天就简单来聊一下这个问题。事实上,很多自然语言处理(NLP)的模型,尤其是上文提到的大语言模型(如GPT系列),都是通过无监督学习或自监督学习的方式进行训练的。也就是说它们不需要人工标注的标签来进行训练。

2024-08-27 15:50:14 990

原创 2024年国内人工智能大模型汇总

作为360鸿图大模型的重要组成,智脑模型拥有多项核心功能,包括多模态理解、多语言处理、知识问答、逻辑推理、多轮对话等。九天人工智能平台提供人工智能算力、算法、数据,汇聚优秀AI能力,打造从智算基础设施、核心算法能力到智能化应用的全栈人工智能服务,全面支持自智网络等多样化运营商智慧运营需求,为工业、医疗、政务、教育、金融等行业客户构建创新解决方案。此外,360智脑模型还积极与各行业合作伙伴共同打造行业大模型,以“行业化、专有化、轻量化”为特点,根据各行业的实际需求定制专属的行业大模型。

2024-08-27 15:33:57 1417

原创 大模型技术知识点:RAG

RAG的核心思想是让语言模型在生成回答或文本时能够动态地从外部知识库中检索相关信息。这种方法能够提高模型生成内容的准确性、可靠性和透明度,同时减少“幻觉”(即模型生成看似合理但实际上错误的信息)。

2024-08-23 16:39:49 686

原创 大语言模型落地的关键技术:RAG

RAG 是检索增强生成(Retrieval-Augmented Generation)的简称,是当前最火热的大语言模型应用落地的关键技术,主要用于提高语言模型的效果和准确性。检索(Retrieval)和生成(Generation)。检索(Retrieval):这一部分的工作是从大量的文本数据中检索出与输入问题最相关的信息。它通常使用一个检索系统,用于大规模的文档集合(例如维基百科)中寻找与输入相关的文段。生成(Generation):生成部分则使用类似GPT的语言模型,它会根据检索到的信息来生成响应或回答。

2024-08-23 16:38:02 793

原创 LangChain的RAG实践

RAG的概念最先在2020年由Facebook的研究人员在论文中提出来。基于预训练模型(当时LLM的概念不像现在这么如日中天,但LLM也可以被归类为预训练模型)的参数型记忆;基于向量的非参数型记忆。RAG技术将这两种记忆类型进行了整合,最终,在知识密集型的NLP任务上,比如QA,比单独使用上述两种类型的记忆获得了更好的效果。接下来将具体介绍RAG如何来补充LLM的一些短板,以及在两种记忆的具体体现,并使用LangChain来实现基本RAG流程。

2024-08-23 16:33:03 886

原创 全网最全RAG评估指南:全面解析RAG评估指标并提供代码示例

最近我一直在关注和优化RAG(Retrieval-Augmented Generation)相关的内容,总结了一下RAG的痛点和最佳实践,然后重点会介绍如何评估RAG。

2024-08-23 16:27:47 1006

原创 LangChain 0.2 - 构建RAG应用

RAG 是一种利用附加数据增强 LLM 知识的技术。LLM 可以推理广泛的主题,但他们的知识仅限于他们接受训练的特定时间点的公共数据。如果您想构建能够推理私有数据或模型截止日期后引入的数据的 AI 应用程序,则需要使用模型所需的特定信息来增强模型的知识。将适当的信息引入模型提示的过程称为检索增强生成 (RAG)。LangChain 有许多组件,旨在帮助构建问答应用程序以及更广泛的 RAG 应用程序。如上所示,我们可以从提示中心加载提示(例如,此 RAG 提示{context}| llm")查看。

2024-08-23 16:20:03 670

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除