🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇
⭐FloodFill⭐
🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇
前言
Flood Fill算法,也被称为种子填充算法,是一种在计算机图形学和图像处理中广泛使用的算法。它的主要用途是从一个给定的起始点(称为“种子”)开始,填充与该点颜色相同且相连的区域。这个过程类似于洪水从一个点开始蔓延到周围的连通区域,直到遇到边界或不同的颜色。
1. 工作原理
- 选择起始点:用户选择一个起始点(通常是图像中的一个像素),作为填充操作的起点。
- 检查当前点:算法会检查当前点的颜色是否符合填充条件(比如,是否是目标颜色)。
- 改变颜色:如果符合条件,则将当前点的颜色更改为新的指定颜色。
- 递归或迭代扩展:接着,算法会检查当前点周围相邻的点,并重复步骤2和3。这个过程可以递归地进行,也可以使用队列或栈来迭代实现。
- 停止条件:当所有符合条件的相邻点都被处理过后,算法就会停止。
2. 实现方式
Flood Fill算法通常有两种实现方法:
- 深度优先搜索 (DFS): 使用递归或显式堆栈来进行填充。每次找到一个符合条件的点时,就立即深入探索其邻居。
- 广度优先搜索 (BFS): 使用队列来实现。先处理起始点,然后依次处理它所有的直接邻居,再处理这些邻居的邻居,以此类推。
3. 应用场景
图像编辑软件:如Photoshop等软件中的油漆桶工具。
游戏开发:例如扫雷游戏中点击空白处展开相邻格子的功能。
地图着色:在地图上标记特定区域。
数据可视化:热力图、地形渲染等。
计算机视觉:图像分割、边缘检测等。
4. 示例代码模板
下面是一个简单的Flood Fill算法示例,使用了深度优先搜索(DFS)来实现:
public class FloodFill {
private static final int[] dx = {0, 0, -1, 1};
private static final int[] dy = {-1, 1, 0, 0};
public void floodFill(char[][] grid, int x, int y, char oldColor, char newColor) {
// 检查坐标是否越界
if (x < 0 || y < 0 || x >= grid.length || y >= grid[0].length) return;
// 如果不是旧颜色或者已经是新颜色,不需要填充
if (grid[x][y] != oldColor || grid[x][y] == newColor) return;
// 更改当前点的颜色
grid[x][y] = newColor;
// 对当前点的四个方向递归调用floodFill
for (int i = 0; i < 4; i++) {
floodFill(grid, x + dx[i], y + dy[i], oldColor, newColor);
}
}
}
这段代码定义了一个floodFill
方法,接受一个二维字符数组grid
表示图像,以及两个坐标x
和y
作为起始点,还有需要替换的旧颜色oldColor
和新颜色newColor
。通过递归的方式,它会把从起始点开始的所有连续的oldColor
都替换成newColor
。
5: 太平洋⼤西洋⽔流问题(medium)
题⽬链接:417. 太平洋大西洋水流问题 - 力扣(LeetCode)
算法思路
这个问题是经典的图搜索问题,目标是找到矩阵中所有可以同时流向太平洋和大西洋的点。这里的“流向”意味着从一个点出发,只能移动到高度不低于当前点的高度的相邻点(上下左右四个方向)。我们可以通过深度优先搜索(DFS)来解决这个问题。
算法步骤
初始化:
- 获取矩阵的尺寸
m
和n
。- 初始化两个布尔型二维数组
vis1
和vis2
,用于记录哪些位置可以从太平洋和大西洋到达。初始时,所有位置都标记为未访问(false
)。边界搜索:
- 从太平洋(左边界和上边界)开始,使用DFS遍历所有可以从这些边界到达的位置,并在
vis1
中标记这些位置。- 从大西洋(右边界和下边界)开始,使用DFS遍历所有可以从这些边界到达的位置,并在
vis2
中标记这些位置。查找交集:
- 遍历整个矩阵,找出那些在
vis1
和vis2
中都被标记为可到达的位置。这些位置就是可以同时流向太平洋和大西洋的位置。结果收集:
- 将满足条件的位置坐标加入结果列表
ret
中,并返回这个列表。DFS函数逻辑
dfs(int[][] board, int i, int j, boolean[][] vis)
函数负责从给定的位置(i, j)
开始进行DFS搜索。- 如果当前位置还没有被访问过,则将其标记为已访问。
- 对于当前位置的每个邻居(上下左右),如果邻居没有被访问过且邻居的高度大于或等于当前位置的高度,则递归地对邻居执行DFS。
算法正确性
- 通过从边界开始进行DFS,我们可以确保只考虑那些可以从边界到达的位置。
- 由于我们在四个方向上检查邻居,因此可以保证搜索过程中的连通性。
- 只有当一个位置既可以从太平洋到达也可以从大西洋到达时,它才会被加入最终的结果列表。
复杂度分析
- 时间复杂度:最坏情况下,每个单元格都需要被访问两次(一次从太平洋边界,一次从大西洋边界),因此时间复杂度为 O(m * n)。
- 空间复杂度:我们需要两个额外的 m x n 的布尔数组来存储访问状态,所以空间复杂度也是 O(m * n)。
这种方法能够有效地解决问题,避免了重复计算,同时也保持了较低的空间开销。
代码实现
class Solution {
int m,n;
int[] dx = new int[]{1,0,-1,0};
int[] dy = new int[]{0,-1,0,1};
boolean[][] vis1;
boolean[][] vis2;
public List<List<Integer>> pacificAtlantic(int[][] board) {
m = board.length;
n = board[0].length;
vis1 = new boolean[m][n];
vis2 = new boolean[m][n];
for(int i =0;i<m;i++){
//太平洋竖边界
if(!vis1[i][0]){
dfs(board,i,0,vis1);
}
//大西洋竖边界
if(!vis2[i][n-1]){
dfs(board,i,n-1,vis2);
}
}
for(int i =0;i<n;i++){
//太平洋横边界
if(!vis1[0][i]){
dfs(board,0,i,vis1);
}
//大西洋横边界
if(!vis2[m-1][i]){
dfs(board,m-1,i,vis2);
}
}
List<List<Integer>> ret = new ArrayList<>();
for(int i =0;i<m;i++){
for(int j =0;j<n;j++){
if(vis1[i][j]&&vis2[i][j]){
List<Integer> index = new ArrayList<>();
index.add(i);
index.add(j);
ret.add(index);
}
}
}
return ret;
}
public void dfs(int[][] board,int i ,int j,boolean[][] vis){
vis[i][j] = true;
//往右下走
for(int k =0;k<4;k++){
int x = i+dx[k];
int y = j+dy[k];
if(x>=0&&x<m&&y>=0&&y<n&&!vis[x][y]&&board[x][y]>=board[i][j]){
dfs(board,x,y,vis);
}
}
}
}
总结
这个用了一个正难则反的思想,在很多算法题中都会用到这个技巧,好好学,好好练,感谢阅览!