一个正整数 N 的因子中可能存在若干连续的数字。例如 630 可以分解为 3×5×6×7,其中 5、6、7 就是 3 个连续的数字。给定任一正整数 N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。
输入格式:
输入在一行中给出一个正整数 N(1<N<231)。
输出格式:
首先在第 1 行输出最长连续因子的个数;然后在第 2 行中按 因子1*因子2*……*因子k
的格式输出最小的连续因子序列,其中因子按递增顺序输出,1 不算在内。
输入样例:
630
输出样例:
3
5*6*7
#include <iostream>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <queue>
#include <cstdio>
#include<cmath>
#include <cstdlib>
using namespace std;
// 从左往右 暴力破解 找可以被整除的连续因子
// 第一次运行最后一个测试点超时 剪枝
int main() {
long long n;
cin >> n;
int max = 0;
int min_i = 2;
long long sum = 1;
for(int i = 2; i <= sqrt(n) + 1; i++) {
sum = 1;
for (int j = 0; sum <= n; j++) {
sum *= (i + j);
if (n % sum != 0) {
if (j > max) {
max = j;
min_i = i;
}
if (n % (i + j) != 0) {
i = i + j;
}
break;
}
}
}
if (max == 0) {
max = 1;
min_i = n;
}
cout << max << endl;
for (int i = 0; i < max; i++) {
if (i != 0) {
cout << '*';
}
cout << min_i + i;
}
return 0;
}