小数在内存中的存储表示


整数在内存中的存储方式比较简单,我们来看看小数在内存中的存储方式。首先,要学会十进制小数与二进制小数之间的转换。

   

(1)二进制小数转化为十进制小数

  

   比如把二进制小数110.11转化为十进制小数,步骤如下:

   


(2)十进制小数转化为二进制小数


   方法是这样的:先分别把十进制小数的整数部分和小数部分转化为二进制,然后合并即可。当然整数部分很简单,直接进行二进制转化,而小数部分就不一样了。


   具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的整数部分为零,或者整数部分为1,此时0或1为二进制的最后一位,或者达到所要求的精度为止。比如:


   将十进制小数173.8125转化为二进制小数

   

   

   即


所以最终得到:


那么,小数在内存中是怎么存储的呢?


无论是单精度小数还是双精度小数,在存储中都分为三个部分。


  (1)符号位           0代表正,1代表负

  (2)指数位           用于存储科学计数法中的指数数据,并且采用移位存储

  (3)尾数部分


指数有正有负,注意指数位采用移位存储,偏移量为127,假设指数为2,那么指数码表示为129的二进制形式,即10000001


在内存中从高位到低位依次是符号位,指数位和尾数部分。


   float  的符号位占1位,指数位占8位,尾数部分占23位

   double 的符号位占1位,指数位占11位,尾数部分占52位


我们以173.8125为例,我们知道计算机只认识二进制数据,由于173.8125对应的二进制数据为10101101.1101

那么把10101101.1101写成,实际上任何一个十进制小数转化为二进制小数后都可以表示为小数点前面的1是固定的,所以不进行存储),那么尾数部分存储的实际上就是,而指数位存储的就是127+m的二进制形式,当m=7时为10000110。


所以173.8125在内存中存储为0 10000110 01011011100000000000000


下面有一段代码:

#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
typedef long long LL;

int main()
{
    float x = 1.0;
    cout<<(int &)x<<endl;
    cout<<*(int *)&x<<endl;
    return 0;
}

我们发现输出结果均为1065353216


分析:

由于1.0为float型数据,占4字节,可以知道1.0在内存中存储为0 01111111 00000000000000000000000,对于语句 *(int *)&x,意思就是说先将float型的x的指针强制转换为int型的指针,然后取出值。由于是按照float型数据存储的,而却解释成int型,即对应的int整数为,而(int &)x就相当于*(int *)&x

   

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值