647. 回文子串
这题重点是DP数组的定义,注意与编辑距离类型题目的差别
1、DP数组定义: dp[i][j] 为bool,表示区间 [i, j] 的子串是否是回文串
2、DP数组初始化:初始化为true或false都可以,只是后面写法不一样
3、递推公式:
· 当 s[i] != s[j] 时,头尾不相等肯定不是回文串:
dp[i][j] = false
· 当s[i] == s[j] 时,分以下情况:
情况1:i == j,只有一个字符的字符串是回文串
情况2:i是j前一位,是回文串
情况3:j - i > 1,是否是回文串依赖[i + 1, j - 1]子串是否是回文串
(情况1、2都是为了情况3顺利递推做的铺垫)
4、遍历顺序:i 依赖 i + 1,j 依赖 j - 1,所以从下向上、从左向右遍历
int countSubstrings(string s) {
// dp[i][j]表示[i, j]子串是否是回文串
vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), true));
int ans = 0;
// i从后向前遍历,j从前向后遍历
for (int i = s.size() - 1; i >= 0; --i) {
for (int j = i; j < s.size(); ++j) {
// 头尾不相等肯定不是回文串
if (s[i] != s[j])
dp[i][j] = false;
// 头尾相等则分情况讨论
else {
// 情况1:i == j,是回文串
if (i == j)
++ans;
// 情况2:i是j前一位,是回文串
else if (i == j - 1)
++ans;
// 其余情况:是否是回文串依赖[i + 1, j - 1]子串是否是回文串
else {
dp[i][j] = dp[i + 1][j - 1];
if (dp[i][j]) ++ans;
}
}
}
}
return ans;
}
516. 最长回文子序列
掌握了上一题的DP数组定义这题还是蛮简单的
1、DP数组定义: dp[i][j] 为bool,表示区间 [i, j] 内的最长回文子序列长度
2、DP数组初始化:可以初始化为1,也可以不初始化,后面写法稍微不同而已
3、递推公式:
· 当 s[i] != s[j] 时:不取s[i]、不取s[j]、s[i]与s[j]都不取,三种情况中取最大(前两种情况包含了第三种情况,所以实际只有两种)
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
· 当s[i] == s[j] 时,分以下情况:
情况1:j - i <= 1,子串就是回文串,dp[i][j]等于子串长度,即 :
(dp数组初始化为1时可省略这种情况)
dp[i][j] = j - i + 1
情况2:在 [i + 1, j - 1] 区间的基础上加上左右两个字符,即:
dp[i][j] = dp[i + 1][j - 1] + 2
4、遍历顺序:i 依赖 i + 1,j 依赖 j - 1,所以从下向上、从左向右遍历
int longestPalindromeSubseq(string s) {
vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
for (int i = s.size() - 1; i >= 0; --i) {
for (int j = i; j < s.size(); ++j) {
// 不相等时:不取s[i]、不取s[j]、s[i]与s[j]都不取,三种情况中取最大
// (前两种情况包含了第三种情况,所以实际只有两种)
if (s[i] != s[j])
dp[i][j] = std::max(dp[i + 1][j], dp[i][j - 1]);
else {
if (j - i <= 1)
dp[i][j] = j - i + 1;
else
dp[i][j] = dp[i + 1][j - 1] + 2;
}
}
}
// 返回整个字符串中的最长回文子序列
return dp[0][s.size() - 1];
}
动态规划章节完结撒花!!!!!