代码随想录算法训练营day57 | 647. 回文子串,516.最长回文子序列

647. 回文子串:

  • 暴力解法:两层for循环,遍历区间起始位置和终止位置,然后判断这个区间是不是回文。时间复杂度:O(n^3).      Output Limit Exceeded

class Solution:
    #时间复杂度:O(n^3)
    def countSubstrings(self, s: str) -> int:
        ans = 0
        for i in range(len(s)):
            for j in range(i+1, len(s)+1):
                print('current substring is', s[i:j])
                if self.isPalindrome(s, i, j-1):
                    print('yes')
                    ans += 1
        return ans


    def isPalindrome(self, str, start, end):
        while start < end:
            if str[start] != str[end]:
                return False
            start += 1
            end -= 1
        return True
  • 动态规划:时间复杂度:O(n^2), 空间复杂度:O(n^2)

五部曲:

1. 确定dp数组以及下标的含义:布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)        的。子串是否是回文子串,如果是dp[i][j]为true,否则为false。

2. 确定递推公式:分析如下四种情况:

  • 当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false;(情况1)
  • 当s[i]与s[j]相等时:
    • 下标i 与 j相同,同一个字符例如a,当然是回文子串;(情况2)
    • 下标i 与 j相差为1,例如aa,也是回文子串;(情况3)
    • 下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。(情况4)

3. dp数组如何初始化:dp[i][j]初始化为false

4. 确定遍历顺序:首先从递推公式中可以看出,情况4是根据dp[i + 1][j - 1]是否为true,再      对dp[i][j]进行赋值true的。如图可以看出,dp[i + 1][j - 1] 在 dp[i][j]的左下角,

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

5. 打印检查

class Solution(object):
    def countSubstrings(self, s):
        """
        :type s: str
        :rtype: int
        """
        dp = [[False]*(len(s)+1) for _ in range(len(s)+1)]
        ans = 0
        for i in range(len(s)-1, -1, -1):
            for j in range(i, len(s)):
                if s[i] == s[j]:
                    if j-i <= 1:
                        ans += 1
                        dp[i][j] = True
                    elif dp[i+1][j-1]:
                        ans += 1
                        dp[i][j] = True
        
        return ans
  • 双指针:时间复杂度:O(n^2),空间复杂度:O(1)

  • 首先确定回文串,就是找中心然后向两边扩散看是不是对称的就可以了。
  • 在遍历中心点的时候,要注意中心点有两种情况:
    • 一个元素可以作为中心点,
    • 两个元素也可以作为中心点。
class Solution:
    def countSubstrings(self, s: str) -> int:
        ans = 0
        for i in range(len(s)):
            ans += self.extendCheck(s, i, i, len(s))
            ans += self.extendCheck(s, i, i+1, len(s))
        return ans

    
    def extendCheck(self, s, i, j, n):
        res = 0
        while i >= 0 and j < n and s[i] == s[j]: #由中心向两边扩散
            i -= 1
            j += 1
            res += 1
        return res

516.最长回文子序列

注意:

  • subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements.
  • substring is a contiguous sequence of characters within the string.
    • 相关题目:#674,#5

五部曲:

1. 确定dp数组以及下标的含义:

  • dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

2. 确定递推公式:

  • 在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。
  • 如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

  • 如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子串的长度,那么分别加入s[i]、s[j]看看哪一个可以组成更长的回文子序列。
    • 加入s[j]的回文子序列长度为dp[i + 1][j]。
    • 加入s[i]的回文子序列长度为dp[i][j - 1]。
    • 那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

3. dp数组如何初始化:

  • 首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j 相同时候的情况。

  • 所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

  • 其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。

 4. 确定遍历顺序:

  • 从递推公式dp[i][j] = dp[i + 1][j - 1] + 2 和 dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]) 可以看出,dp[i][j]是依赖于dp[i + 1][j - 1] 和 dp[i + 1][j] #想象一个二维矩阵来看
  • 遍历i的时候一定要从下到上遍历
  • 遍历j的时候一定要从左到右遍历

5. 打印检查

  • 右遍历顺序可知,最终结果处于矩阵右上角,即 dp[0][len(s)-1]
class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        dp = [[0]*(len(s)) for _ in range(len(s))]
        for i in range(len(s)):
            dp[i][i] = 1

        for i in range(len(s)-1, -1, -1):
            for j in range(i+1, len(s)):
                if s[i] == s[j]:
                    dp[i][j] = dp[i+1][j-1] + 2
                else:
                    dp[i][j] = max(dp[i+1][j], dp[i][j-1])
        
        return dp[0][len(s)-1]

        

小结:

  • 到此动态规划告一段落,二刷继续!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长回文子串是指在一个字符串中最长回文子序列回文是指正着读和倒着读都一样的字符串。动态规划是解决最长回文子串问题的一种常用方法。动态规划的思想是将问题分解成子问题,通过求解子问题的最优解来得到原问题的最优解。在最长回文子串问题中,我们可以使用一个二维数组dp[i][j]来表示从i到j的子串是否为回文子串。如果dp[i][j]为true,则表示从i到j的子串回文子串,否则不是。我们可以通过以下步骤来求解最长回文子串: 1. 初始化dp数组,将所有dp[i][i]都设置为true,表示单个字符是回文子串。 2. 遍历字符串s,从长度为2的子串开始,依次判断每个子串是否为回文子串。如果是,则将dp[i][j]设置为true。 3. 在遍历的过程中,记录最长回文子串的长度和起始位置。 4. 最后,通过起始位置和长度来截取最长回文子串。 下面是一个示例代码,可以帮助你更好地理解动态规划求解最长回文子串的过程: class Solution { public: string longestPalindrome(string s) { int len=s.size(); if(len<2) return s; bool dp[len][len];//布尔型,dp[i][j]表示从i到j是否构成回文 int max_count=1;//最大字串的长度 int start=0;//最长字串的起始位置 for(int j=0;j<len;j++) { for(int i=0;i<j;i++) { if(s[i]!=s[j]) dp[i][j]=false; else if((j-i)<3)//(j-1)-(i+1)+1<2表示dp[i][j]的最大字串长度为1 dp[i][j]=true; else { dp[i][j]=dp[i+1][j-1]; } if((j-i+1)>max_count&&dp[i][j]) { max_count=j-i+1; start=i; } } } return s.substr(start,max_count);//截取字符串 } };

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值