NKOJ2644 【SCOI2010 DAY2】传送带
时间限制 : 20000 MS 空间限制 : 65536 KB
问题描述
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间
输入格式
输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By
第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy
第三行是3个整数,分别是P,Q,R
输出格式
输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位
样例输入
0 0 0 100
100 0 100 100
2 2 1
样例输出
136.60
提示
对于100%的数据,1<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
1<=P,Q,R<=10
思路:
先三分AB上的点的位置,再三分固定e点后的最小时间。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstdlib>
using namespace std;
const double zero=1e-5;
struct fy
{
double x,y;
fy operator/(const int & b)
{
fy ans=*this;
ans.x/=b,ans.y/=b;
return ans;
}
fy operator-(const fy & b)
{
fy ans;
ans.x=x-b.x,ans.y=y-b.y;
return ans;
}
fy operator+(const fy & b)
{
fy ans;
ans.x=x+b.x,ans.y=y+b.y;
return ans;
}
} a,b,c,d;
int p,q,r;
double dis(fy a,fy b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double aefd(fy e,fy f)
{
return dis(a,e)/p+dis(e,f)/r+dis(f,d)/q;
}
double san2(fy e)
{
fy l=c,r=d;
fy mid1,mid2,d;
while(dis(l,r)>zero)
{
d=(r-l)/3;
mid1=l+d,mid2=r-d;
if(aefd(e,mid1)>aefd(e,mid2)) l=mid1;
else r=mid2;
}
return aefd(e,(mid1+mid2)/2);
}
double san1()
{
fy l=a,r=b;
fy mid1,mid2,d;
while(dis(l,r)>zero)
{
d=(r-l)/3;
mid1=l+d,mid2=r-d;
double m1=san2(mid1),m2=san2(mid2);
if(san2(mid1)>san2(mid2)) l=mid1;
else r=mid2;
}
fy e=(mid1+mid2)/2;
return san2(e);
}
int main()
{
scanf("%lf%lf%lf%lf%lf%lf%lf%lf%d%d%d",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y,&d.x,&d.y,&p,&q,&r);
printf("%.2lf",san1());
}