描述
给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。
输入描述:
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K< 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。
输出描述:
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
示例1
输入:
6 -2 11 -4 13 -5 -2 10 -10 1 2 3 4 -5 -23 3 7 -21 6 5 -8 3 2 5 0 1 10 3 -1 -5 -2 3 -1 0 -2 0复制输出:
20 11 13 10 1 4 10 3 5 10 10 10 0 -1 -2 0 0 0
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main() {
int k;
while (cin>>k) {
if(k==0){
break;
}
int a[k];
vector<int> dp(k);
for(int i=0;i<k;i++){
scanf("%d",&a[i]);
dp[i] = a[i];
}
//假设最开始的最大位置为下标0
int oldstart = 0;
int oldend = 0;
int newstart = 0;
int newend = 0;
int res = a[0];
for(int i=1;i<k;i++){
if(dp[i] > dp[i-1]+a[i]){
/*根据当前dp的情况,判断是否更新oldstart与oldend,
目的为了不丢失每次可能的最大值以及他们的开始位置和结束位置*/
oldstart = i;
oldend = i;
}else{
dp[i] = dp[i-1]+a[i];
oldend = i;
}
if(res < dp[i]){//只有当最大值变化的时候,才更新newstart与newend
newstart = oldstart;
newend = oldend;
res = dp[i];
}
}
printf("%d %d %d\n",res,a[newstart],a[newend]);
}
}