KY141 最大连续子序列

描述

    给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。

输入描述:

    测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K< 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。

输出描述:

    对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。

示例1

输入:

6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0

复制输出:

20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2
0 0 0
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main() {
    int k;
    while (cin>>k) {
        if(k==0){
            break;
        }
        int a[k];
        vector<int> dp(k);
        for(int i=0;i<k;i++){
            scanf("%d",&a[i]);
            dp[i] = a[i];
        }
        //假设最开始的最大位置为下标0
        int oldstart = 0;
        int oldend = 0;
        int newstart = 0;
        int newend = 0;
        int res = a[0];
        for(int i=1;i<k;i++){
            if(dp[i] > dp[i-1]+a[i]){
        /*根据当前dp的情况,判断是否更新oldstart与oldend,
            目的为了不丢失每次可能的最大值以及他们的开始位置和结束位置*/
                oldstart = i;
                oldend = i;
            }else{
                dp[i] = dp[i-1]+a[i];
                oldend = i;
            }
            if(res < dp[i]){//只有当最大值变化的时候,才更新newstart与newend
                newstart = oldstart;
                newend = oldend;
                res = dp[i];
            }
        }
        printf("%d %d %d\n",res,a[newstart],a[newend]);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值