哈尔滨理工大学-CPC23 2014-3-K-喵喵的神·数

K.喵喵的神·数
Time Limit: 1000 MSMemory Limit: 2560000 K
Total Submit: 193 (49 users)Total Accepted: 27 (26 users)Special Judge: No
Description

喵喵对组合数比较感兴趣,并且对计算组合数非常在行。同时为了追求有后宫的素质的生活,喵喵每天都要研究质数。
我们先来复习一下什么叫做组合数。对于正整数P、T



然后我们再来复习一下什么叫质数。质数就是素数,如果说正整数N的约数只有1和它本身,N就是质数;另外,1不是质数。

今天,喵喵想要知道


Input

输入第一行是一个整数N(N<=1000)。

接下来N行,每行包括一个正整数T和一个质数P(1<=P<=T<231)。

Output
包括N行,根据输入的顺序,每一行为一个整数:
Sample Input
2
3 2
10 3
Sample Output
1

0






正常的算法:

一》C(m, n) % p (p为素数, m, n <= 10^8)
   
    算法伪代码:

    1) 预处理 f[x] = (x!) mod p. (0 <= x < p)

    2) 求m!中把p因子去掉,余下的数乘起来 mod p.

    函数 G(m)求解 2)问题:
    伪代码:

        G(m)
        1) if (0 == m)    return 1;
        2) m = k*p + t;
        3) G[m] = f[p-1] ^ k * f[t] * G[m / k] mod p;

        (其中 f[p-1]^k mod p 二分做)

    3)
    C(m, n) = m! / (n! * (m-n)!);
   
    A = m! mod p;
    B = n!*(m-n)! mod p;
    C = A / B mod p;
   
    在这里有俩种算法:
    1) 求B的逆元; ( O(n^2) 枚举, 或者.. )
    2) 扩展欧几里德求 BC = A(mod p) (= 是同余的意思)
        最小的 C 就是答案; 这里的 A, B 转换成 对 2)问题
        求解.



#include <iostream>
#include <map>
#include <set>
#include <string>
#include <algorithm>
#include <math.h>
#include <queue>

using namespace std;

template <class T> void out(T x, int n){    for(int i = 0; i < n; ++i)    cout << x[i] << ' ';    cout << endl;    }
template <class T> void out(T x, int n, int m){    for(int i = 0; i < n; ++i)    out(x[i], m);    cout << endl;    }

#define OUT(x) (cout << #x << " = " << x << endl)
#define FOR(i, a, b)    for(int i = (int)a; i < (int)b; ++i)
#define REP(i, b)    FOR(i, 0, b)
#define FORD(i, a, b)    for(int i = (int)a; i >= (int)b; --i)

#define N 10007
#define MOD(x, y)   ((x) % (y) + y) % (y)

long long f[N+1];

long long ext_gcd(long long a, long long b, long long &x, long long &y) {
    if (0 == b)
    {
        x = 1; y = 0;
        return a;
    }
    else
    {
        long long tx, ty, d;
        d = ext_gcd(b, MOD(a, b), tx, ty);
        x = ty;
        y = tx - a / b * ty;
        return d;
    }
}

long long modular_linear(long long a, long long b, long long n) {
    long long tx, ty, d, x0, i;
    d = ext_gcd(a, n, tx, ty);
    if (0 == b % d)
    {
        x0 = MOD(tx * b / d, n);
        return x0;
    }
    else
    {
        return 1;
    }
}

void init(){
    f[0] = 1;
    FOR (i, 1, N)
    {
        f[i] = (f[i-1] * i) % N;
    }
}

// m! 有多少p因子
long long calP(long long m, long long p){
    long long ret = 0;
    while (m)
    {
        ret += m / p;
        m /= p;
    }
    return ret;
}

long long square(long long x){    return x * x;   }

long long bigmod(long long b, long long p, long long m) {
    if (0 == p)   
        return 1;
    else if (0 == p % 2)
        return square(bigmod(b, p/2, m)) % m;
    else
        return ((b % m) * bigmod(b, p-1, m)) % m;
}

// 计算m!-mod p
long long calM(long long m, long long p){
    if (0 == m)    return 1;
    long long ret = 0, k, t;
    k = m / p;
    t = m % p;

    ret = (bigmod(f[p-1], k, N) * f[t]) % p;
    ret *= calM(m / p, p);
    return ret % p;
}

long long calCmnModP(long long m, long long n, long long p){
    long long A, B, u, v;
    u = calP(m, p);
    v = calP(n, p) + calP(m-n, p);

    if (u > v)    return 0;
    else
    {
        A = calM(m, p);
        B = (calM(n, p) * calM(m-n, p)) % p;

        return modular_linear(B, A, p);
    }
}


int main(){
    int t, n, m;
    scanf("%d", &t);
    init();
    while (t--)
    {
        scanf("%d %d", &m, &n);
        printf("%d\n", calCmnModP(m, n, N));
    }
    return 0;
} 





二》<h2 class="entry_title">大整数求组合数取余(Lucas定理)</h2><div class="archive_info"><span class="date">2013年02月25日</span><span class="category"> ⁄ 综合</span>⁄ 共 915字					⁄ 字号 <span class="font"><a>小</a> <a>中</a> <a>大</a></span><span class="comment"> ⁄ <span>评论关闭</span></span><span class="edit"></span></div><div class="ad_r"></div><p>【卢卡斯(Lucas)定理】</p><p>Lucas定理用来求C(a,b)mod p的值,其中p为素数。</p><p>数学表达式为:</p><p>Lucas(a,b,q)=C(a%q,b%q)*Lucas(a/p,b/p,p);</p><p>Lucas(a,0,q)=0;</p><p>通过这个定理就可以很方便的把大数的组合转化成小数。但其中还是要求C(a%q,b%q)%p,所以这里引入逆元来求。</p><p>【定义】若整数a,b,p, 满足a·b≡1(mod p).则称a 为b 模p 的乘法逆元, 即a=b- 1mod p.其中, p 是模数。</p><p>应用到组合数中来就是:</p><p> a!/[b!*(a-b)!] % p == a! * [b!*(a-b)!]-1 %p</p><p>【逆元求法】:</p><p>应用费马小定理,ap-1=1 mod p ,即  a*ap-2=1 mod p</p><p>也就是说  ap-2就是a的逆元。</p><p>当然这里求出来的逆元是在取模p的逆元,对我们最终目标没有影响。这也是比较方便而且比较好的方法。</p><p>弄个模板来。</p><p>
</p><p>
</p><p><pre name="code" class="cpp">#include <cstdio>  
#include <iostream>  
#include <cmath>  
#include <cstring>  
#include <algorithm>  
using namespace std;  
#define maxn 100010  
typedef long long LL;  
LL m,n,p;  
LL Pow(LL a,LL b,LL mod)  
{  
    LL ans=1;  
    while(b)  
    {  
        if(b&1)  
        {  
            b--;  
            ans=(ans*a)%mod;  
        }  
        else  
        {  
            b/=2;  
            a=(a*a)%mod;  
        }  
    }  
    return ans;  
}  
LL C(LL n,LL m)  
{  
    if(n<m)  
        return 0;  
    LL ans=1;  
    for(int i=1;i<=m;i++)  
    {  
        ans=ans*(((n-m+i)%p)*Pow(i,p-2,p)%p)%p;  
    }  
    return ans;  
}  
LL Lucas(LL n,LL m)  
{  
    if(m==0)  
        return 1;  
    return (Lucas(n/p,m/p)*C(n%p,m%p))%p;  
}  
int main()  
{  
    int t;  
    scanf("%d",&t);  
    while(t--)  
    {  
        scanf("%lld%lld%lld",&n,&m,&p);  
        printf("%lld\n",Lucas(n,m));  
    }  
    return 0;  
} 





三》<h2 id="t_618194800100l5rv" class="titName SG_txta">大数取余</h2>
<div id="sina_keyword_ad_area2" class="articalContent   "><p>有一类题目会因为求出的结果太大而只要求输出对某个数m取余后的结果,而且这个m是比较小的数,比如不超过32位整数…
而这类大数都是可以由较小的数经过某些运算得到的…
于是我整理了一下对付几种运算的方法…包括四则运算,指数,组合数,塔函数的应对方法…</p><p>那么就开始吧…慢慢来…
首先是最常识的加减法:</p><pre>add_mod(a,b,m){
    return ((a%m)+(b%m))%m;
}

别小看加法哦…很多用dp解的题目中靠着加法可是能达到很大的数呢…

minus_mod(a,b,m){
    return (a-b+m)%m;
}

减法…会遇到吗?

接着是依然很简单的乘法:

multiply_mod(a,b,m){
    return ((a%m)*(b%m))%m;
}

这是当m*m不会溢出时可以用的,同时也是通常的情况…
但是如果m*m连long long都会溢出的话…就需要把一个数一位位拆开来做了…

multiply_mod(a,b,m){
    if(b==0)return 0;
    return (((b&1)?a:0)+(multiply_mod(a,b>>1,m)<<1)%m)%m;
}

然后是除法,但有点限制:
(a/b)%m
特殊条件:m和b互质
前提:a能被b整除
这个有点特殊,意为虽然不知道a是多少,但是已知c,而且c=a%m,用c和b来求(a/b)%m的方法
虽然需要m和b互质,但是不互质的话也是可以做的,因为a也一定是gcd(b,m)的倍数,具体可以看看这里

需要用到扩展欧几里德来求…
至于扩展欧几里德是什么…去Google一下吧…

extend_euclid(a,b,&x0,&y0){
    if(b==0){
        x0=1;
        y0=0;
        return a;
    }
    r=extend_euclid(b,a%b);
    t=x0;
    x0=y0;
    y0=t-a/b*y0;
    return r;
}
divide_mod(a,b,m){
    extend_euclid(b,m,x0,y0);
    return (a*(((x0%m)+m)%m))%m;
}

这个在求组合数的时候可能用到…
不过似乎很少遇到需要用除法取余的情况呢…

然后是更大却很简单的幂运算:
(a^b)%m
这是初学递归或者二分时就会遇上的一个很简单的方法,和之前的乘法差不多

power_mod(a,b,m){
    if(b==0)return 1;
    if(b&1)return (a*power_mod((a*a)%m,b>>1,m))%m;
    else return power_mod((a*a)%m,b>>1);
}

其中乘法取余会运算中溢出的话可以改成之前那个multiply_mod()

恩…开始有趣了…下面是组合数:
C(a,b)%m
特殊条件:m是质数
如果b或者a-b比较小的话,可以用之前计算(a/b)%m的方式来把组合数公式展开来计算
不过当b和a-b与m相比很大时,有更好的方法:
a,b在m进制下表示为 a=(ak,…,a0),b=(bk,…,b0)0=<ai,bi<m
于是会有这样的性质:

C(a,b)=C(ak,bk)*...*C(a0,b0) (mod m)

最后是难以想象的大的数…塔函数:
(a↑↑b)%m
这里可以看到其一些性质
比如ProjectEuler 282
Ackermann 函数就是非常恶心的大数
第一层是很小的常数,第二层是n个a相加,也就是乘法,第三层是n个a相乘,也就是幂,第四层是n个a叠着做幂即塔函数,第k+1层是n个a做第k层运算…
用小数字居然也能表示出如此之大的数…佩服啊…
上一篇中也有提到:

n>=phi(m)时,a^n=a^(n%phi(m)+phi(m)) (mod m)

其中phi()是欧拉函数
由于phi(x)<x,所以就算是对a↑↑b这样大的数也总会在足够短的时间内收敛,然后计算出(modm)的值
这个不止在塔函数中,也可以用在各种指数异常大的情况下
特别的,在b>m的情况下,(a↑↑b)%m的值将是定值

恩…就到这里了…


PS:逆元素-http://baike.baidu.com/view/3140397.htm?from_id=11054145&type=syn&fromtitle=%E9%80%86%E5%85%83&fr=aladdin




非正常的思路:

(找到了余数的规律 = = 。。)


代码还过了。。。

卢卡思、费马、欧几里德怕不是要死的活过来!???

#include<stdio.h>
int main()
{
	int i,n,p,t;
	while (scanf("%d", &n) != EOF)
	{
		for (i = 0; i < n; i++)
		{
			scanf("%d%d", &t, &p);
			printf("%d\n", (t / p) % p);
		}
	}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值