有序数组的平方
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
-
示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100] -
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121] -
提示:
1 <= nums.length <= 10^4
-10^4 <= nums[i] <= 10^4
nums 已按 非递减顺序 排序
要求时间复杂度O(N)
解题思路
最直接的方法肯定是暴力排序了。当然不可能是时间复杂度为O(N), 那样应该为O(N^2).
既然让时间复杂度达到O(N),必然可以达到,第一个想到的是桶排序,理论上是可以的。毕竟最大也就10^4,但是写起来有点麻烦。观察一下,题目上说了已经按照非递减序列排序了
。如果全部大于0相当于就不需要排序,如果存在小于0 的,必定存在一个下标flag,小于该下标的均小于0.这样我们就可以将其看成两个序列。参考归并排序,很容易就得到时间复杂度为O(N)的题解
归并排序, 点击查看哦
代码实现
class Solution {
public int[] sortedSquares(int[] nums) {
int[] res = new int[nums.length];
int flag = nums.length;
if(nums[0]<0)
{
for(int i = 0; i < nums.length; i++){
if(nums[i]<0)
continue;
else{
flag = i;
break;
}
}
int L = flag-1;
int R = flag;
int i = 0;
while(L>=0 && R<nums.length){
res[i++] = (nums[L] + nums[R]) < 0 ? nums[R] * nums[R++] : nums[L] * nums[L--];
}
while(L>=0)
res[i++] = nums[L] * nums[L--];
while(R<nums.length)
res[i++] = nums[R] * nums[R++];
}else{
for(int i = 0; i < nums.length; i++){
res[i] = nums[i] * nums[i];
}
}
return res;
}
}
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/squares-of-a-sorted-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。