有序数组的平方

这篇博客探讨了一种解决已排序数组平方后仍保持非递减排序的问题,提出了利用数组特点和归并排序思想实现O(N)时间复杂度的解决方案。通过找到负数与正数的分界点,将数组分为两部分分别平方后再归并,有效降低了时间复杂度。
摘要由CSDN通过智能技术生成

有序数组的平方

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。

  • 示例 1:
    输入:nums = [-4,-1,0,3,10]
    输出:[0,1,9,16,100]
    解释:平方后,数组变为 [16,1,0,9,100]
    排序后,数组变为 [0,1,9,16,100]

  • 示例 2:
    输入:nums = [-7,-3,2,3,11]
    输出:[4,9,9,49,121]

  • 提示:
    1 <= nums.length <= 10^4
    -10^4 <= nums[i] <= 10^4
    nums 已按 非递减顺序 排序

要求时间复杂度O(N)

解题思路

最直接的方法肯定是暴力排序了。当然不可能是时间复杂度为O(N), 那样应该为O(N^2).
既然让时间复杂度达到O(N),必然可以达到,第一个想到的是桶排序,理论上是可以的。毕竟最大也就10^4,但是写起来有点麻烦。观察一下,题目上说了已经按照非递减序列排序了。如果全部大于0相当于就不需要排序,如果存在小于0 的,必定存在一个下标flag,小于该下标的均小于0.这样我们就可以将其看成两个序列。参考归并排序,很容易就得到时间复杂度为O(N)的题解
归并排序, 点击查看哦

代码实现

class Solution {
    public int[] sortedSquares(int[] nums) {
        int[] res = new int[nums.length];
        int flag = nums.length;
        if(nums[0]<0)
        {
            for(int i = 0; i < nums.length; i++){
                if(nums[i]<0)
                    continue;
                else{
                    flag = i;
                    break;
                }
            }
            int L = flag-1;
            int R = flag;
            int i = 0;
            while(L>=0 && R<nums.length){
                res[i++] = (nums[L] + nums[R]) < 0 ? nums[R] * nums[R++] : nums[L] * nums[L--];
            }
            while(L>=0)
                res[i++] = nums[L] * nums[L--];
            while(R<nums.length)
                res[i++] =  nums[R] * nums[R++];
        }else{
            for(int i = 0; i < nums.length; i++){
                res[i] = nums[i] * nums[i];
            }
        }
        
        return res;
    }
}

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/squares-of-a-sorted-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值