北邮 离散数学 期末必考题总结(含重点英文单词)

高级计数

题型一:求解常系数线性齐次递推关系

1.1首先搞懂什么是常系数齐次线性
在这里插入图片描述
1.2开始求解

  1. 情况一:特征方程有两个不相等实根.
    在这里插入图片描述

  2. 情况二:特征方程有两个相等实根
    在这里插入图片描述

  3. 更一般的情况:特征方程有多个实根,但是不重复
    在这里插入图片描述
    在这里插入图片描述
    多设置几个参数的事儿…

  4. 最一般的情况:多根,且有重数
    在这里插入图片描述
    方程根多了就不好解了,估计出多重根的话会给出特征方程的解.
    设方程的时候从 0 , n , n 2 , . . . 0,n,n^2,... 0,n,n2,...这样

题型二:求解常系数线性非齐次递推关系

2.1 样式

在这里插入图片描述
2.2 通解 = 特解 + 相伴的齐次解

在这里插入图片描述
作用: 非齐次 → 齐次 非齐次\to齐次 非齐次齐次
2.3 在某种情况下求特解

当F(n)是 n的多项式 × 一个常数的n次幂 时,特解有公式.
在这里插入图片描述
解释 : 公共的形式是 : ( p 2 n 2 + p 1 n + p 0 ) 2 n 如果后面 2 n , 这个 2 , 是相伴齐次方程的根 , 比如 50 重根 在前面多添加一个 n 50 就行了 像这样 : n 50 : ( p 2 n 2 + p 1 n + p 0 ) 2 n 解释:\\ 公共的形式是:(p_2n^2+p_1n+p_0)2^n\\ 如果后面2^n,这个2,是相伴齐次方程的根,比如50重根\\ 在前面多添加一个n^{50}就行了\\ 像这样:n^{50}:(p_2n^2+p_1n+p_0)2^n 解释:公共的形式是:(p2n2+p1n+p0)2n如果后面2n,这个2,是相伴齐次方程的根,比如50重根在前面多添加一个n50就行了像这样:n50:(p2n2+p1n+p0)2n

题型三: 求分治算法的时间复杂度

3.1 唯一方法,硬代公式法

根据主定理:
在这里插入图片描述
例:
在这里插入图片描述
找 a , b , c , d ; a = 7 ; b = 2 ; c = 15 / 4 ; d = 2 ; 判断 a 与 b d ; 7 > 2 2 ∴ O ( n log ⁡ 2 7 ) 找a,b,c,d;\\ a=7; \quad b = 2; \quad c=15/4; \quad d=2;\\ 判断a与b^d;\\ 7 > 2^2\\ \therefore O(n^{\log_27}) a,b,c,d;a=7;b=2;c=15/4;d=2;判断abd;7>22O(nlog27)

题型四:生成函数法求解递推关系

(无敌重点)
我认为解题思路是: 根据所给出的递推关系 “凑0”
在这里插入图片描述

基础:看懂一些定义

N ( v ) − − − − 顶点 v 所有相邻点的集合 N ( A ) − − − − 集合 A 的所有相邻点的集合 d e g ( v ) − − − − 点 v 的度 握手定理 − − − − 度数和 = 边数的二倍 K − − 完全图 ; C − − 圈图 ; W − − 轮图 ; " n − C u b e s " − − n 立方体图 ; B i p a r t i t e G r a p h − − 二分图 ; C o m p l e t e . . . 完全二分图 K n , n ∣ A ∣ − − − − 集合 A 中点的数目 ; ∣ E ∣ 边数 N(v) ---- 顶点v所有相邻点的集合\\ N(A) ---- 集合A的所有相邻点的集合\\ deg(v) ---- 点v的度\\ 握手定理 ---- 度数和=边数的二倍\\ K -- 完全图; C -- 圈图; W -- 轮图; "n-Cubes" -- n立方体图;\\ Bipartite Graph -- 二分图;Complete ...完全二分图K_{n,n}\\ |A| ---- 集合A中点的数目;|E|边数 N(v)顶点v所有相邻点的集合N(A)集合A的所有相邻点的集合deg(v)v的度握手定理度数和=边数的二倍K完全图;C圈图;W轮图;"nCubes"n立方体图;BipartiteGraph二分图;Complete...完全二分图Kn,nA集合A中点的数目;E边数

问题一:complete matchings完全匹配问题

在这里插入图片描述
在这里插入图片描述

问题二:图的同构

同构: isomorphism
找图形不变量:graph invariant

  1. 点数边数
  2. 点的度,图中最大度最小度
  3. 长度为K的简单回路,重要!!!

问题三:点和边的连通性

连通性:connectivity
割点:cut,割边
在这里插入图片描述
求K(G)或者 λ ( G ) \lambda(G) λ(G)
在这里插入图片描述
在这里插入图片描述
一个重要事实:
在这里插入图片描述

问题四:有向图的连通

  1. 强连通: 回路
  2. 弱连通: 通路
  3. 强连通分支: strong components
    在这里插入图片描述
    在这里插入图片描述

问题五:计算顶点之间的通路数

在这里插入图片描述

问题六:欧拉和哈密顿二位

  1. 欧拉:Euler 关心边,因为七桥问题,桥就是边
  2. 哈密顿:Hamilton 关心点,因为邮递员问题,城市就是点
  3. 回路:circus
  4. 通路:path
  5. 欧拉回路充要:所有点度数为偶数
  6. 欧拉通路充要:恰好有两个度为奇数的顶点
  7. 满足以下条件中的一个可以判断它是哈密顿图在这里插入图片描述
  8. 剩下的一

问题七:最短路径

  1. dijkstra不多说了
  2. Floyd
    在这里插入图片描述
    任意两个点之间,都用其他点更新一下,看看会不会拐弯去更近.

问题八:旅行商问题

The traveling salesperson Porblem
我感觉是寻找最短哈密顿回路
在这里插入图片描述
解法:暴力
在这里插入图片描述

问题九:最大流问题

这里的割:
在这里插入图片描述
这定理太牛了!!!
在这里插入图片描述
标记法:
在这里插入图片描述
在这里插入图片描述

问题十:平面图

  1. 定义:没有交叉
    在这里插入图片描述
  2. 面:region
    在这里插入图片描述
  3. 欧拉公式:r = e-v+2
    在这里插入图片描述
    想想这个:
    在这里插入图片描述
  4. 同胚homeomorphic
    在这里插入图片描述
    在这里插入图片描述
    初等细分:elementary subdivision
  5. tuku定理
    在这里插入图片描述

晚安世界!明天离散加油!

2019试卷 ---- 检测错误,改正错误

在这里插入图片描述
在这里插入图片描述
检测:最短距离减一
改正:最短距离减一/2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值