高级计数
题型一:求解常系数线性齐次递推关系
1.1首先搞懂什么是常系数齐次线性
1.2开始求解
-
情况一:特征方程有两个不相等实根.
-
情况二:特征方程有两个相等实根
-
更一般的情况:特征方程有多个实根,但是不重复
多设置几个参数的事儿… -
最一般的情况:多根,且有重数
方程根多了就不好解了,估计出多重根的话会给出特征方程的解.
设方程的时候从 0 , n , n 2 , . . . 0,n,n^2,... 0,n,n2,...这样
题型二:求解常系数线性非齐次递推关系
2.1 样式
2.2 通解 = 特解 + 相伴的齐次解
作用:
非齐次
→
齐次
非齐次\to齐次
非齐次→齐次
2.3 在某种情况下求特解
当F(n)是 n的多项式 × 一个常数的n次幂 时,特解有公式.
解释
:
公共的形式是
:
(
p
2
n
2
+
p
1
n
+
p
0
)
2
n
如果后面
2
n
,
这个
2
,
是相伴齐次方程的根
,
比如
50
重根
在前面多添加一个
n
50
就行了
像这样
:
n
50
:
(
p
2
n
2
+
p
1
n
+
p
0
)
2
n
解释:\\ 公共的形式是:(p_2n^2+p_1n+p_0)2^n\\ 如果后面2^n,这个2,是相伴齐次方程的根,比如50重根\\ 在前面多添加一个n^{50}就行了\\ 像这样:n^{50}:(p_2n^2+p_1n+p_0)2^n
解释:公共的形式是:(p2n2+p1n+p0)2n如果后面2n,这个2,是相伴齐次方程的根,比如50重根在前面多添加一个n50就行了像这样:n50:(p2n2+p1n+p0)2n
题型三: 求分治算法的时间复杂度
3.1 唯一方法,硬代公式法
根据主定理:
例:
找
a
,
b
,
c
,
d
;
a
=
7
;
b
=
2
;
c
=
15
/
4
;
d
=
2
;
判断
a
与
b
d
;
7
>
2
2
∴
O
(
n
log
2
7
)
找a,b,c,d;\\ a=7; \quad b = 2; \quad c=15/4; \quad d=2;\\ 判断a与b^d;\\ 7 > 2^2\\ \therefore O(n^{\log_27})
找a,b,c,d;a=7;b=2;c=15/4;d=2;判断a与bd;7>22∴O(nlog27)
题型四:生成函数法求解递推关系
(无敌重点)
我认为解题思路是: 根据所给出的递推关系 “凑0”
图
基础:看懂一些定义
N ( v ) − − − − 顶点 v 所有相邻点的集合 N ( A ) − − − − 集合 A 的所有相邻点的集合 d e g ( v ) − − − − 点 v 的度 握手定理 − − − − 度数和 = 边数的二倍 K − − 完全图 ; C − − 圈图 ; W − − 轮图 ; " n − C u b e s " − − n 立方体图 ; B i p a r t i t e G r a p h − − 二分图 ; C o m p l e t e . . . 完全二分图 K n , n ∣ A ∣ − − − − 集合 A 中点的数目 ; ∣ E ∣ 边数 N(v) ---- 顶点v所有相邻点的集合\\ N(A) ---- 集合A的所有相邻点的集合\\ deg(v) ---- 点v的度\\ 握手定理 ---- 度数和=边数的二倍\\ K -- 完全图; C -- 圈图; W -- 轮图; "n-Cubes" -- n立方体图;\\ Bipartite Graph -- 二分图;Complete ...完全二分图K_{n,n}\\ |A| ---- 集合A中点的数目;|E|边数 N(v)−−−−顶点v所有相邻点的集合N(A)−−−−集合A的所有相邻点的集合deg(v)−−−−点v的度握手定理−−−−度数和=边数的二倍K−−完全图;C−−圈图;W−−轮图;"n−Cubes"−−n立方体图;BipartiteGraph−−二分图;Complete...完全二分图Kn,n∣A∣−−−−集合A中点的数目;∣E∣边数
问题一:complete matchings完全匹配问题
问题二:图的同构
同构: isomorphism
找图形不变量:graph invariant
- 点数边数
- 点的度,图中最大度最小度
- 长度为K的简单回路,重要!!!
问题三:点和边的连通性
连通性:connectivity
割点:cut,割边
求K(G)或者
λ
(
G
)
\lambda(G)
λ(G)
一个重要事实:
问题四:有向图的连通
- 强连通: 回路
- 弱连通: 通路
- 强连通分支: strong components
问题五:计算顶点之间的通路数
问题六:欧拉和哈密顿二位
- 欧拉:Euler 关心边,因为七桥问题,桥就是边
- 哈密顿:Hamilton 关心点,因为邮递员问题,城市就是点
- 回路:circus
- 通路:path
- 欧拉回路充要:所有点度数为偶数
- 欧拉通路充要:恰好有两个度为奇数的顶点
- 满足以下条件中的一个可以判断它是哈密顿图
- 剩下的一
问题七:最短路径
- dijkstra不多说了
- Floyd
任意两个点之间,都用其他点更新一下,看看会不会拐弯去更近.
问题八:旅行商问题
The traveling salesperson Porblem
我感觉是寻找最短哈密顿回路
解法:暴力
问题九:最大流问题
这里的割:
这定理太牛了!!!
标记法:
问题十:平面图
- 定义:没有交叉
- 面:region
- 欧拉公式:r = e-v+2
想想这个:
- 同胚homeomorphic
初等细分:elementary subdivision - tuku定理
晚安世界!明天离散加油!
2019试卷 ---- 检测错误,改正错误
检测:最短距离减一
改正:最短距离减一/2.