组合博弈基础 -- 算法学习日记

组合博弈基础

本文仅作为个人学习使用,图中引用了HDACM课程的代码和图片,在此感谢.

题目描述

  • 一堆棋子两个人抓,一次可以抓1,2,3个,但是不能抓0个,谁抓完最后的棋子谁获胜.

名词解释

组合游戏:

  • 两个人玩
  • 能在有限次内结束
  • 游戏的操作状态是一个有限的棋盘
  • 不能进行下去时,游戏结束

终结点:

  • 游戏按规则进行不下去的点.

  • 一次能拿2,3,4个,那么0个和1个都是终结点.

必胜点:

  • N点

  • 现在这个人拿,一定至少有某种方法到达必败点.

必败点:

  • P点

  • 现在这个人拿,按规则无论怎么拿都会进入到必胜点.

举个栗子

  • 还剩4颗棋子,游戏规定一次可以拿1个或者2个或者3个.
  • 4 就是必败点
  • 1 2 3 就是必胜点
  • 0 是终结点 那么也就一定是必败点

算法实现

  1. 所有终结点标记为必败点

  2. 能直接到达必败点的标记为必胜点

  3. 无论怎么走都只能到必胜点的标记为必败点

  4. 如果步骤三找不到新的必败点了,算法结束

    否则,返回到步骤二.

例题演示

一. 玩游戏的小男孩

  • 只能往左,下和左下走,如图,如果无路可走则判负.
    在这里插入图片描述

  • **思路一:**组合博弈思想,找N,P点. 从最终状态开始找,最左下角是个 P点.横竖往前倒腾,发现规律.

  • **思路二:**想象成两堆牌,要么在一堆中抓一张,要么两堆各自抓一张.(转化了问题而已)其实就是往下走行减少一,往左走列减少一,往左下走都减少一.

Nim游戏

  • 题目描述:

    三堆牌,每人每次可以任意选择一堆,抓任意张牌,但是不能是0张,抓完最后一张牌的人获得胜利.

  • 终结点: 0,0,0

  • 可以用三元组画出状态转移图

Nim和

  • 每堆牌的数量,用二进制表示,进行异或得到的结果称为Nim和

  • 重要结论1:

    Nim和为0的点一定为必败点.

  • 可以理解的证明:

    0,0,0点 Nim和为零

    在Nim和为零的位置,减少任意一堆牌的数量都会使得Nim和不再为零

    在Nim和不为零的位置,一定可以通过让Nim和跟某堆牌异或的方式使得Nim和变为0.(有三种解决方案)

    以上三条与组合博弈的基本理论,必胜点和必败点之间的转换相对应.

SG函数

  • SG函数的值是不等于它的后继状态的最小的自然数值

  • 举例:

    注意4的值是0,因为他的后继节点sg值分别是1,2,3.不等于1,2,3的最小的自然数是 0.
    在这里插入图片描述

  • 惊人的发现必败点的SG值为0!!!

组合游戏的并

  • 题目描述:
    在这里插入图片描述

  • SG函数的一个重要应用:

    可以先求出每堆当前状态的SG值,再将三堆的值异或,得到的结果如果是0就是必败点,如果是1就是必胜点.

代码求SG函数

1.可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+1);

2.可选步数为任意步,SG(x) = x;

3.可选步数为一系列不连续的数,用模板计算。
在这里插入图片描述

#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 110;
const int M = 10010;
int a[N],f[M];
//a中保存合法的取法
//f中保存各个点的SG值
int k;

int sg(int p)
{
    bool g[N] = {0};
    for(int i = 0; i < k; i++)
    {
        int t = p - a[i];
        if(t < 0) break;
        if(f[t] == -1) f[t] = sg(t);
        g[f[t]] = 1;  
    }
    for(int i = 0;; i++)
    {
        if(!g[i]) return i;
    }
}

int main()
{
    while(scanf("%d",&k) == 1)
    {
        if(k==0) break;
        for(int i = 0;i < k; i++)
        {
            scanf("%d",&a[i]);
        }
        sort(a,a+k);
        memset(f,-1,sizeof(f));

        int c;
        cin >> c;
        while(c--)
        {
            int t;
            cin >> t;
            int s = 0;
            while(t--)
            {
                int p;
                cin >> p;
                if(f[p]==-1) f[p] = sg(p);
                s = s^f[p];
            }
            if(s == 0) cout << "L";
            else cout << "W";
        }
        cout << endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值