群、环、域

0. 二元运算

对于集合 S S S,在集合上定义 f : S ∘ S → S f:S\circ S\rightarrow S f:SSS。如果 f f f满足:

  1. 可运算: f f f对任意集合 S S S中的两个元素 a 、 b a、b ab都有定义;
  2. 单值性: f : a ∘ b f:a\circ b f:ab只有一个值;
  3. 封闭性: f : a ∘ b ∈ S , ∀ a , b ∈ S f:a\circ b \in S,\forall a,b \in S f:abS,a,bS

那么,则说明 f f f是定义在 S S S上的二元运算。

1.群

1.0群的定义

在集合 S S S上定义二元运算 + + +,如果 S S S关于 + + +满足下列性质:

  1. 结合律: ∀ a , b , c ∈ S \forall a,b,c \in S a,b,cS ( a + b ) + c = a + ( b + c ) (a+b)+c=a+(b+c) (a+b)+c=a+(b+c)
  2. 有单位元 e e e ∀ a ∈ S \forall a \in S aS,满足 a + e = e + a = a a+e=e+a=a a+e=e+a=a
  3. 每一个元素都可逆: ∀ a ∈ S , ∃ a − 1 ∈ S \forall a \in S,\exists a^{-1} \in S aS,a1S,满足 a + a − 1 = e a+a^{-1}=e a+a1=e

那么,集合 S S S关于 + + +构成一个群,记作 G = ( S , + ) G=(S,+) G=(S,+)
如果 S S S关于 + + +满足交换律 a + b = b + a a+b=b+a a+b=b+a,那么则称$G是一个交换群,又称作Abelian群(阿贝尔群)。

1.1群的相关性质

1.1.0 有限群与无限群

∣ G ∣ |G| G称作群的阶,如果一个群有限群那么群中的元素是有限的;否则 G G G是无限群。例如模 m m m的非负剩余系 Z m = { 0 , 1 , 2 , 3 , . . , m − 1 } Z_m=\{0,1,2,3,..,m-1\} Zm={0,1,2,3,..,m1}对于模m加法来说构成一个群。验证过程如下:

  1. 可结合: ∀ a , b , c ∈ Z m , ( a + b ) + c m o d    m = a + ( b + c ) m o d    m \forall a ,b,c\in Z_m,(a+b)+c\mod m = a+(b+c) \mod m a,b,cZm,(a+b)+cmodm=a+(b+c)modm,显然成立;
  2. 单位元: 0 0 0是单位元,因为 ∀ a ∈ Z m , a + 0 = 0 + a = a m o d    m \forall a \in Z_m,a+0=0+a=a \mod m aZm,a+0=0+a=amodm
  3. 每一个元素都有逆元: ∀ a ∈ Z m , ∃ b ∈ Z m \forall a \in Z_m,\exists b \in Z_m aZm,bZm满足 a + b = m = 0 m o d    m a+b=m=0\mod m a+b=m=0modm,即 a − 1 = m − a a^{-1}=m-a a1=ma

还可以证明 ( Z m , + ) (Z_m,+) (Zm,+)是阿贝尔群。

1.1.1 子群

如果群 G G G的非空子集 H H H G G G中的运算也构成一个群,那么则说 H H H G G G的子群,记作 H ≤ G H\leq G HG。例如设 n n n是一个整数,整数加群中所有 n n n的倍数显然也构成一个群,因而是 Z Z Z的子群。
子群的判定定理如下:群 G G G的非空集合 H H H是一个子群的充要条件是:对于 ∀ a , b ∈ H \forall a,b\in H a,bH,有 a + b − 1 ∈ H a+b^{-1}\in H a+b1H

1.1.2 等价关系(补充)

在集合 A A A上的一个二元关系 R R R,如果关系 R R R满足:

  1. 自反性:若 a ∈ A a\in A aA,则 a R a aRa aRa
  2. 对称性:若 a , b ∈ A , a R b a,b\in A,aRb a,bA,aRb,则 b R a bRa bRa
  3. 传递性:若 a , b , c ∈ A , a R b , b R c a,b,c\in A,aRb,bRc a,b,cA,aRb,bRc,则 a R c aRc aRc

那么称关系 R R R A A A上的等价关系。例如模 m m m同余就是一种等价关系。

1.1.3 陪集

G G G是一个群, H H H是它的子群,当且仅当 a , b ∈ G a,b\in G a,bG满足 b − 1 + a ∈ H b^{-1}+a\in H b1+aH时,在群 G G G上定义一个关系 R R R a R b aRb aRb。可以验证:

  1. 对于 ∀ a ∈ G \forall a \in G aG a − 1 + a = e ∈ H a^{-1}+a=e\in H a1+a=eH,所以 a R a aRa aRa
  2. 如果 a R b aRb aRb,那么 b − 1 + a ∈ H b^{-1}+a\in H b1+aH,从而 a − 1 + b = ( b − 1 + a ) − 1 ∈ H a^{-1}+b =(b^{-1}+a)^{-1}\in H a1+b=(b1+a)1H,因而得到 b R a bRa bRa
  3. 如果 a R b , b R c aRb,bRc aRb,bRc,即有 b − 1 + a ∈ H , c − 1 + b ∈ H b^{-1}+a\in H,c^{-1}+b\in H b1+aH,c1+bH,从而 c − 1 + a = c − 1 + b + b − 1 + a = c − 1 + e + a = c − 1 + a ∈ H c^{-1}+a=c^{-1}+b+b^{-1}+a=c^{-1}+e+a=c^{-1}+a\in H c1+a=c1+b+b1+a=c1+e+a=c1+aH

因此 R R R G G G上的一个等价关系。

设群 H H H是群 G G G的一个子群。对于 ∀ a ∈ G \forall a\in G aG,定义集合 { a + h ∣ h ∈ H } \{a+h|h\in H\} {a+hhH} H H H的一个左陪集,简记为 a + H a+H a+H。同理可以定义 H H H右陪集 { h + a ∣ h ∈ H } \{h+a|h\in H\} {h+ahH}
可以证明:

  1. a + H a+H a+H H H H有相同多个元素;
  2. a a a的等价类可以定义为 [ a ] = a + H [a]=a+H [a]=a+H
  3. H H H的任意两个左陪集或者相等或者没有公共元素;
  4. G G G关于子群 H H H的左陪集的个数称为 H H H G G G中的指数,记作 [ G : H ] [G:H] [G:H]

如果对于 G G G的子群 H H H满足 a + H = H + a a+H=H+a a+H=H+a,那么称 H H H G G G的正规子群,记为 H &lt; G H\lt G H<G。例如交换群的所有子群都是正规子群。在证明正规子群时严格按照子群和正规子群的定义证明即可。

1.1.4 商群

H H H G G G的正规子群,定义集合 G / H = { a + H ∣ a ∈ G } G/H=\{a+H|a\in G\} G/H={a+HaG},在集合 G / H G/H G/H上定义运算: ( a H ) + ( b H ) = ( a + b ) H (aH)+(bH)=(a+b)H (aH)+(bH)=(a+b)H G / H G/H G/H在上述加法下构成群,被称为 G G G关于正规子群 H H H的商群。
例如对于任意正整数 m m m m Z mZ mZ是整数加法群 Z Z Z的正规子群,其所有的加法陪集为: r + m Z = { m k + r ∣ k ∈ Z } , 0 ≤ r &lt; m r+mZ=\{mk+r|k\in Z\},0\le r\lt m r+mZ={mk+rkZ},0r<m可以分别用 [ 0 ] , [ 1 ] , . . . , [ m − 1 ] [0],[1],...,[m-1] [0],[1],...,[m1]表示这 m m m个陪集: Z / Z m = [ 0 ] , [ 1 ] , . . . [ m − 1 ] Z/Z_m={[0],[1],...[m-1]} Z/Zm=[0],[1],...[m1]定义加法: [ a ] + [ b ] = [ a + b m o d &ThinSpace;&ThinSpace; m ] [a]+[b]=[a+b\mod m] [a]+[b]=[a+bmodm]显然在这这个加法运算下 Z / Z m Z/Z_m Z/Zm构成一个加群。

1.1.5 元素的阶

G G G中任意一个元素 a a a的全体方幂构成的集合,对于群 G G G中的乘法构成子群,这个子群称为由 a a a生成的子群,记为 &lt; a &gt; = { a i ∣ i ∈ Z } &lt;a&gt;=\{a^i|i\in Z\} <a>={aiiZ}
对于群 G G G中的任意一个元素 a a a,如果存在正整数 k k k使得: a k = e a^k=e ak=e那么称满足上式的最小的 k k k为元素 a a a的阶,记作 o ( a ) o(a) o(a)。显然 &lt; a &gt; &lt;a&gt; <a>的阶也是 o ( a ) o(a) o(a)。若不存在满足上述关系的 k k k,那么称 a a a是无限阶元,记作 o ( a ) = ∞ o(a)=\infty o(a)=

1.1.6 循环群

G G G是一个群,如果存在一个元素 a a a使得 G = &lt; a &gt; G=&lt;a&gt; G=<a>,则称 G G G是循环群。元素 a a a G G G的生成元。若 o ( a ) = ∞ o(a)=\infty o(a)=,那么则称 G G G是无限循环群;否则 o ( a ) = n o(a)=n o(a)=n( n n n是某个正整数),那么则称 G G G是有限循环群。
例如: 整数加法群 Z Z Z是循环群,其生成元是 1 1 1 − 1 -1 1;模整数m的剩余类加群Z_m是循环群,生成元是 [ 1 ] [1] [1]
如果一个循环群 G G G是无限循环群,那么 G G G只有,两个生成元 a a a a − 1 a^{-1} a1
如果 G G G是一个 n n n阶循环群,则群 G G G中的元素都是 a k ( 0 ≤ k ≤ n ) a^k(0\le k\le n) ak(0kn)的形式。
还可以证明,循环群的子群和商群仍旧是循环群。

1.2 群中常用算法

如果群的阶 n n n的素因子分解已知,则可以有效的求解群中元素的阶和群的生成元。

算法0:确定群中一个元素的阶
输入: n n n阶有限群 G G G,元素 a ∈ G a∈G aG, n n n的素因子分解 n = p 1 e 1 p 2 e 2 . . . p k e k n=p_1^{e_1}p_2^{e_2}...p_k^{e_k} n=p1e1p2e2...pkek
输出: a a a的阶

  1. t ← n t \gets n tn
  2. for i = 1 : k i=1 : k i=1:k
    2.0 令 t ← t / p i e i t\gets t/p_i^{e_i} tt/piei
    2.1 计算 a 1 ← a t a_1\gets a^t a1at
    2.2 如果 a ≠ 1 a\neq 1 a̸=1,计算 a 1 ← a 1 p i a_1\gets a_1^{p_i} a1a1pi t = t ⋅ p i t=t\cdot p_i t=tpi;
  3. 返回 t t t

算法1:确定群的一个生成元
输入: n n n阶有限群 G G G n n n的素因子分解 n = p 1 e 1 p 2 e 2 . . . p k e k n=p_1^{e_1}p_2^{e_2}...p_k^{e_k} n=p1e1p2e2...pkek
输出: G G G的一个生成元 α \alpha α

  1. 随机选择一个 G G G中的元素 α \alpha α
  2. for i = 1 : k i=1:k i=1:k
    2.0 计算 b ← α n / p i b\gets \alpha^{n/p_i} bαn/pi
    2.1 如果 b = 1 b=1 b=1,则转到步骤0;
  3. 返回 α \alpha α

2. 环

2.0 环的定义

在群的基础上,进一步定义环。对于一个非空集合 R R R,在其上定义加法 + + +和乘法 ⋅ \cdot 两个代数运算。如果:

  1. ( R , + ) (R,+) (R,+)是一个阿贝尔群;
  2. R R R关于乘法 ⋅ \cdot 是可结合的,即对于 ∀ a , b , c ∈ R \forall a,b,c\in R a,b,cR满足 ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) (a\cdot b)\cdot c=a\cdot(b\cdot c) (ab)c=a(bc)
  3. 乘法对加法满足左右分配律,即对于 ∀ a , b , c ∈ R \forall a,b,c \in R a,b,cR,满足 a ⋅ ( b + c ) = a ⋅ b + a ⋅ c a\cdot (b+c)=a\cdot b +a\cdot c a(b+c)=ab+ac ( b + c ) ⋅ a = b ⋅ a + c ⋅ a (b+c)\cdot a=b\cdot a+c\cdot a (b+c)a=ba+ca

那么则称 R R R是一个环。
如果 R R R还满足:

  1. 乘法交换,即对于 ∀ a , b ∈ R \forall a,b\in R a,bR满足 a ⋅ b = b ⋅ a a\cdot b=b\cdot a ab=ba则称 R R R是交换环;
  2. 如果环 R R R中存在 元素 1 R 1_R 1R使得 1 R ⋅ a = a ⋅ 1 = a 1_R\cdot a=a\cdot 1=a 1Ra=a1=a则称环 R R R具有单位元。元素 1 R 1_R 1R(简记为 1 1 1)称为环 R R R的单位元。

Note: R R R的加法群中的单位元记为 0 0 0,称为环的零元。 R R R中的元素 a a a加法逆元称为负元,记为 − a -a a

显然全体整数关于整数的加法和乘法构成一个环,模 m m m剩余类关于模 m m m加法和模 m m m乘法构成一个环。
证明一个代数 结构是环的一般步骤如下:

  1. 加法封闭;
  2. 加法满足结合律;
  3. 关于加法有零元;
  4. 关于加法有负元;
  5. 关于加法满足交换律;
  6. 关于乘法满足结合律;
  7. 乘法对于加法满足左右分配律;

其余的性质是否满足可以按照类似的方法继续验证。可以看到,环对于乘法的要求仅仅需要满足结合律和乘法对于加法满足左右分配律就可以,并没有对零元、逆元等做出要求。

2.1 环的相关性质

2.1.0 零因子

( R , + , ⋅ ) (R,+,\cdot) (R,+,)是一个环,如果 ∃ a , b ∈ R , a ≠ 0 , b ≠ 0 , a ⋅ b = 0 \exists a,b\in R,a\neq 0,b\neq 0,a\cdot b=0 a,bR,a̸=0,b̸=0,ab=0,则称环 R R R为有零因子环,其中 a a a R R R的左零因子, b b b R R R的右零因子。否则称 R R R为无零因子环。
例如 ( Z , + , ⋅ ) (Z,+,\cdot) (Z,+,)是一个无零因子环,但是矩阵环是一个有零因子环。可以证明如果 p p p是一个素数,那么 Z p Z_p Zp是一个无零因子环。
如果一个环是无零因子环,且已知 a ≠ 0 a\neq 0 a̸=0,那么由 a ⋅ b = a ⋅ c a\cdot b = a\cdot c ab=ac可以得到 b = c b=c b=c。而有零因子环则得不到 这样的结论(参考矩阵乘法)。
可以证明,对于一个无零因子环,那么其中非零元的加法阶相等——或者是 ∞ \infty 或者是个素数 p p p。我们将非零元的加法阶称为环的特征,记作 C h a r R CharR CharR。当加法阶为无穷大时 C h a r R = 0 CharR=0 CharR=0,否则 C h a r R = p CharR=p CharR=p

2.1.1 逆元

( R , + , ⋅ ) (R,+,\cdot) (R,+,)是一个含有单位元的环,如果 ∃ b ∈ R \exists b\in R bR使得 a ⋅ b = b ⋅ a = 1 a\cdot b =b\cdot a =1 ab=ba=1,那么 a a a便是可逆元。 a 、 b a、b ab互为逆元。环中不一定所有的非零元都存在逆元,例如在整数环中只有 ± 1 \pm 1 ±1可逆。

2.1.2 整环、除环和域

一个没有零因子的交换环叫做整环,例如 Z p Z_p Zp就是一个整环。
一个环如果其满足:

  1. R R R中至少包含一个不等于 0 0 0的元素(至少含有两个元素);
  2. R R R有单位元;
  3. R R R的每一个不等于 0 0 0的元都有一个逆元;

那么则说其是一个除环。注意到,除环不一定满足乘法的交换律。
进一步如果一个除环满足乘法的交换律那么则说它是一个域。可以证明有限整环是域,而模 p p p的剩余类环是域当且仅当 p p p是一个素数。

2.1.3 子环、理想和商环

类比子群的概念我们可以定义子环,而理想则和陪集有一定的相似性。显然商环则类似商群。
对于一个环 R R R,如果其非空子集 S S S对于环的两个运算也构成一个环。那么则称 S S S R R R的一个子环,例如模 4 4 4的剩余类环是模 2 2 2的剩余类环的子环。
如果 I I I是环 R R R的一个非空子集,如果满足:

  1. a + b ∈ I , ∀ a , b ∈ I a+b\in I,\forall a,b \in I a+bI,a,bI
  2. a ⋅ r ∈ I a\cdot r\in I arI,且 r ⋅ a ∈ I , ∀ a ∈ I , ∀ r ∈ R r\cdot a\in I,\forall a\in I ,\forall r\in R raI,aI,rR

那么则称 I I I R R R的一个理想。
可见理想一定是子环,子环却不一定是理想。
基于理想的定义,可以进一步给出在商群 R / I = { x + I ∣ x ∈ R } R/I=\{x+I|x\in R\} R/I={x+IxR}中乘法的定义: ( x + I ) ( y + I ) = x y + I , ∀ x , y ∈ R (x+I)(y+I)=xy+I,\forall x,y\in R (x+I)(y+I)=xy+I,x,yR由于 I I I是一个理想,上述定义的乘法是有意义的。容易验证 R / I R/I R/I关于上述乘法构成一个环。进一步可以定义商环。
R R R是环, I I I R R R的理想,则 R / I R/I R/I构成一个环,称为 R R R关于理想 I I I的商环(或称剩余类环)。其中元素 x + I x+I x+I通常记作 [ x ] [x] [x],称之为 x x x所在的等价类或者 x x x I I I的剩余类。

2.1.4 素理想、极大理想和商域

I I I是有单位元的交换环 R R R的一个理想, I ≠ R I\neq R I̸=R。对于 a , b ∈ R a,b\in R a,bR,如果 a ⋅ b ∈ I a\cdot b\in I abI,一定可以得到 a ∈ I a\in I aI或者 b ∈ I b\in I bI,则称 I I I R R R的一个素理想。
如果在 R R R的所有理想中除了 R R R I I I之外没有包含 I I I的理想,则称 I I I R R R的一个极大理想。
整数环内由素数 p p p生成的理想 &lt; p &gt; &lt;p&gt; <p>是一个素理想,同时也是一个极大理想。
对于任意一个环 R R R,我们都可以通过构造分式 a b \frac{a}{b} ba的方法来构造一个域 Q Q Q,使得 R R R Q Q Q的一个子环。类比分数的加法和乘法可以定义域 Q Q Q内的加法和乘法:
b a + d c = b c + a d a c , a , b , c , d ∈ R , a ≠ 0 c ≠ 0 \frac{b}{a}+\frac{d}{c}=\frac{bc+ad}{ac},a,b,c,d\in R,a\neq 0 c\neq 0 ab+cd=acbc+ada,b,c,dR,a̸=0c̸=0 b a ⋅ d c = b d a c , a , b , c , d ∈ R , a ≠ 0 , c ≠ 0 \frac{b}{a}\cdot \frac{d}{c}=\frac{bd}{ac},a,b,c,d\in R,a\neq 0,c\neq 0 abcd=acbd,a,b,c,dR,a̸=0,c̸=0可以证明上述代数运算满足关于域的要求。

3. 有限域

3.0 域和扩域

一个有限域 F F F的阶是指只含有有限个元素的域, F F F中元素的个数称为 F F F的阶。有限域又称为Galois域。若域 F F F的阶为 n n n,则可将 F F F记作 F n F_n Fn G F n GF_n GFn
K K K F n F_n Fn的一个子集,如果 K K K也关于 F n F_n Fn中的运算构成域则称 K K K F n F_n Fn的一个子域, F n F_n Fn K K K的扩域。一个域如果不包含真子域则称其为素域。例如有理数域和阶为素数 p p p有限域 Z p Z_p Zp都是素域。
F F F是一个域, E E E F F F的扩域, S ∈ E S\in E SE,将 E E E中既包含 F F F又包含 S S S的最小子域记为 F ( S ) F(S) F(S),称之为由 S S S生成的 F F F的扩域。 F ( S ) F(S) F(S)实际上是 E E E中全体既包含 F F F又包含 S S S的子域的交集。

3.1 极小多项式

K K K F F F的一个子域, α ∈ F \alpha \in F αF,如果 α \alpha α满足 K K K上的一个非零多项式,则称 α \alpha α K K K上的代数元。
进一步,在 K [ x ] K[x] K[x]中满足 f ( α ) = 0 f(\alpha)=0 f(α)=0的次数最小的多项式 f ( x ) = x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 f(x)=x^n+a_{n-1}x^{n-1}+...+a_1x+a_0 f(x)=xn+an1xn1+...+a1x+a0则是 α \alpha α K K K上的极小多项式。该多项式的次数称为代数元次数。
可以证明,极小多项式 f ( x ) f(x) f(x)满足以下性质:

  1. f ( x ) f(x) f(x)是不可约多项式;
  2. I = { g ( x ) ∈ K [ x ] ∣ g ( α ) = 0 } I=\{g(x)\in K[x]|g(\alpha)=0\} I={g(x)K[x]g(α)=0},则 I I I K [ x ] K[x] K[x]的理想,且 I = &lt; f ( x ) &gt; I=&lt;f(x)&gt; I=<f(x)>

3.2 有限域的结构

有限域的三条结构定理:

  1. F F F是一个特征为素数 p p p的有限域,则 F F F中的元素个数为 p n p^n pn n n n是一个正整数;
  2. 对于任意的素数 p p p和正整数 n n n,总存在一个有限域恰好含有 p n p^n pn个元素;
  3. 任意两个 q = p n q=p^n q=pn元域都同构,即 p n p^n pn元域在同构的意义下是唯一的。

进一步可以证明有限域 F q F_q Fq的乘法群 F q ∗ F_q^* Fq是一个循环群。而 F q ∗ F_q^* Fq的生成元则称为 F q F_q Fq的本原元,根据欧拉函数可以证明 F q F_q Fq的本原元由 ϕ ( q − 1 ) \phi(q-1) ϕ(q1)个。

3.3 有限域上元素的表示方法

根据3.1和3.2,有限域上元素可以采用多项式或者本原元的表示方法。

3.3.0多项式表示法

p p p是素数, q = p n q =p ^ n q=pn。可以证明,只要找到 F p F_p Fp 上一个 n n n 次不
可约多项式 f ( x ) f(x) f(x) ,就有 F q = F p [ x ] / &lt; f ( x ) &gt; F_q= F_p[x]/&lt;f(x)&gt; Fq=Fp[x]/<f(x)> f ( x ) f(x) f(x) 的一个根 α \alpha α,可以证明 F p ( α ) ≈ F q F_p(\alpha)\approx F_q Fp(α)Fq,且 1 , α , α 2 , . . . , α n − 1 1,\alpha , \alpha^2,... ,\alpha^{n-1} 1,α,α2,...,αn1 F p [ α ] F_p[\alpha] Fp[α] F p F_p Fp上的一组基。因此, F q F_q Fq中的元素可以表示成 F p F_p Fp α \alpha α 的次数小于 n n n的多项式,其上的加法为多项式的加法,而乘法为模多项式 f ( x ) f(x) f(x)的乘法。
例如, F 9 F_9 F9上的元素可以表示成 F 3 F_3 F3上次数小于 2 2 2的多项式,即 F 9 = { 0 , 1 , 2 , α , 1 + α , 2 + α , 2 α , 1 + 2 α , 2 + 2 α } F_9=\{0,1,2,\alpha,1+\alpha,2+\alpha,2\alpha,1+2\alpha,2+2\alpha\} F9={0,1,2,α,1+α,2+α,2α,1+2α,2+2α}

3.3.1 本原元表示法

ζ \zeta ζ F q F_q Fq的本原元,那么 F q F_q Fq可以表示为 F q = { 1 , ζ , ζ 2 , . . . , ζ n − 1 } F_q=\{1,\zeta,\zeta^2,...,\zeta^{n-1}\} Fq={1,ζ,ζ2,...,ζn1}

对比上述两种办法,多项式表示法做加法运算比较简单、乘法运算比较复杂,而本原元表示法正好相反。

3.4 有限域上的常用算法

算法 0 0 0:在 F p n F_{p^n} Fpn中计算乘法逆元
输入:非零多项式 g ( α ) ∈ F p n g(\alpha)\in F_{p^n} g(α)Fpn F p n F_{p^n} Fpn中的元素用以 f ( x ) f(x) f(x)的根 α \alpha α的次数小于 n n n的多项式表示,其中 f ( x ) ∈ F p [ X ] f(x)\in F_p[X] f(x)Fp[X] Z p Z_p Zp上的次数为 n n n的不可约多项式);
输出: g ( α ) − 1 ∈ F p n g(\alpha)^{-1}\in F_{p^n} g(α)1Fpn

  1. 利用使用于多项式的欧几里得算法得出两个多项式 s ( α ) , t ( α ) ∈ F p ( α ) s(\alpha),t(\alpha)\in F_p(\alpha) s(α),t(α)Fp(α),使得 s ( α ) g ( α ) + t ( α ) f ( α ) = 1 s(\alpha)g(\alpha)+t(\alpha)f(\alpha)=1 s(α)g(α)+t(α)f(α)=1
  2. 返回 s ( α ) s(\alpha) s(α)

算法 1 1 1: 适用于 F p n F_{p^n} Fpn中幂运算的重复平方乘法;
输入: g ( α ) ∈ F p n g(\alpha)\in F_{p^n} g(α)Fpn,整数 0 ≤ k ≤ p n − 1 0\le k \le p^n-1 0kpn1其二进制表示为 k = ∑ i = 0 t k i 2 i k=\sum_{i=0}^tk_i2^i k=i=0tki2i。( F p n F_{p^n} Fpn中的元素用以 f ( x ) f(x) f(x)的根 α \alpha α的次数小于 n n n的多项式表示,其中 f ( x ) ∈ F p [ X ] f(x)\in F_p[X] f(x)Fp[X] Z p Z_p Zp上的次数为 n n n的不可约多项式);
输出: g ( α ) k g(\alpha)^k g(α)k

  1. s ( α ) ← 1 s(\alpha)\gets 1 s(α)1,如果 k = 0 k=0 k=0,返回 s ( α ) s(\alpha) s(α)
  2. G ( α ) ← g ( α ) G(\alpha)\gets g(\alpha) G(α)g(α)
  3. 如果 k 0 = 1 k_0=1 k0=1,则令 s ( α ) ← g ( α ) s(\alpha)\gets g(\alpha) s(α)g(α)
  4. i = 1 : t i =1:t i=1:t
    3.0 令 G ( α ) ← G ( α ) 2 m o d &ThinSpace;&ThinSpace; f ( α ) G(\alpha)\gets G(\alpha)^2 \mod f(\alpha) G(α)G(α)2modf(α)
    3.1 如果 k i = 1 k_i=1 ki=1,则令 s ( α ) = s ( α ) ⋅ G ( α ) m o d &ThinSpace;&ThinSpace; f ( α ) s(\alpha)=s(\alpha)\cdot G(\alpha) \mod f(\alpha) s(α)=s(α)G(α)modf(α)
  5. 返回 s ( α ) s(\alpha) s(α)

4. 群环域的关系

群环域的关系
学习群环域,记住理解概念看懂证明是一方面,另一方面列举一些例子辅助学习也很重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值