多项式环

本文介绍了多项式环的定义、运算规则,重点讨论了多项式的带余除法,包括公因式、最大公因式和辗转相除法。此外,还涉及了多项式的因式分解、同余关系及模多项式乘法逆元的概念,以及余元定理在找多项式根中的应用。
摘要由CSDN通过智能技术生成

1.定义

对于整环 R R R,在 R R R上定义一个含有为定元 x x x的多项式
f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 , n ≥ 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0,n \ge 0 f(x)=anxn+an1xn1+...+a1x+a0,n0 m m m是使得 a m ≠ 0 a_m \neq0 am̸=0的最大的整数,那么定义 d e g ( f ( x ) ) = m deg(f(x)) = m deg(f(x))=m a m a_m am称为首项系数,默认取 a m = 1 a_m=1 am=1。当 f ( x ) = 0 f(x)=0 f(x)=0时,规定 d e g ( f ( x ) ) = − ∞ deg(f(x))=-\infty deg(f(x))=
R R R上全体多项式的集合记作 R [ x ] R[x] R[x]
定义两个多项式相等如下:
f ( x ) = ∑ i = 0 n a i x i f(x)=\sum_{i=0}^na_ix^i f(x)=i=0naixi g ( x ) = ∑ i = 0 m b i x i g(x)=\sum_{i=0}^mb_ix^i g(x)=i=0mbixi f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x)等价于 m = n m=n m=n a i = b i , 0 ≤ i ≤ n a_i=b_i,0\le i\le n ai=bi,0in

2.运算

(1)加法:
f ( x ) + g ( x ) = ∑ i = 0 M ( a i + b i ) x i f(x)+g(x) = \sum_{i=0}^M(a_i+b_i)x^i f(x)+g(x)=i=0M(ai+bi)xi其中 M = m a x ( n , m ) , a i = 0 ( i > n ) , b i = 0 ( i > m ) M=max(n,m),a_i=0(i\gt n),b_i=0(i\gt m) M=max(n,m)ai=0(i>n)bi=0(i>m)
(2)乘法:
f ( x ) ⋅ g ( x ) = ∑ s = 0 m + n ( ∑ i + j = s a i b j ) x s f(x)\cdot g(x)=\sum_{s=0}^{m+n}(\sum_{i+j=s}a_ib_j)x^s f(x)g(x)=s=0m+n(i+j=saibj)xs R [ x ] R[x] R[x]对于多项式的加法和乘法构成的环称为多项式环。和整数环相比较,多项式环是无限的(因为多项式的 d e g deg deg是无限的)。
规定 x 0 = 1 x^0=1 x0=1 R [ x ] R[x] R[x]中的单位元,逆元 − f ( x ) = ∑ i = 0 n ( − a i ) x i -f(x)=\sum_{i=0}^n(-a_i)x^i f(x)=i=0n(ai)xi。更为重要的一点,多项式相加没有进位,而整数相加有进位,这是多项式优于整数的一大原因。

3.多项式的带余除法

类比整数的带余除法,理解多项式的带余除法。设 f ( x ) , g ( x ) ∈ F [ x ] , g ( x ) ≠ 0 f(x),g(x)\in F[x],g(x) \neq 0 f(x),g(x)F[x],g(x)̸=0,那么是一定有 q ( x ) , r ( x ) ∈ F [ x ] q(x),r(x)\in F[x] q(x),r(x)F[x],满足
f ( x ) = q ( x ) ⋅ g ( x ) + r ( x ) f(x)=q(x)\c

  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值