Codeforces Round 970 (Div. 3)(A~H)

​​​​​题目链接​​​​​​​​​​​​​​​​​​​​​

A

当 a 为奇数的时候,无论如何配对都无法将最后一个 1 减去;
当 a 为偶数的时候,b 也偶数,自然可以内部通过加减操作变成 0;当 b 为奇数的时候,只有当 a = 0 的时候,无法变成 0,因为 a 为偶数,且不为 0,那么一定可以拿出两个 1 和 b 中的一个配对,然后 a 和 b 都为偶数了。

代码

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
using LL = long long;

void slove()
{
    int a, b; cin >> a >> b;
    if (a & 1) cout << "No" << endl;
    else 
        if (a == 0 && b & 1) cout << "NO" << endl;
        else cout << "YES" << endl;
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t; cin >> t;
    while (t--) slove();
    return 0;
}

B

首先判断长度 n 是否可以构成一个正方形;字符串映射为一个二维矩阵,外围为 1,中间全都为 0,那么可以暴力枚举这个二维矩阵,判断该单元格是否为最外围的格子的依据是:判断 i、j 是否等于 1 或 a (a 为这个正方形的边长,设字符串下标从 1 开始)

代码

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
using LL = long long;

void slove()
{
    int n; cin >> n;
    string str; cin >> str;
    str = " " + str;
    int len = sqrt(n);
    if (len * len != n) { cout << "NO" << endl; return; }
    
    bool flag = true;
    for (int i = 1; i <= len; i++)
    {
        for (int j = 1; j <= len; j++)
        {
            if (i == 1 || i == len || j == 1 || j == len)
            {
                if (str[(i - 1) * len + j] != '1')
                    flag = false;
            }
                
            else 
                if (str[(i - 1) * len + j] != '0')
                    flag = false;
        }
    }
    
    if (flag) cout << "YES" << endl;
    else cout << "NO" << endl;
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t; cin >> t;
    while (t--) slove();
    return 0;
}

C

为了使得数组长度更长,数组中的元素值需要尽可能小。
第一个条件是数组中的元素需要升序,第二个条件是相邻元素的差值也得升序。
为了使长度最长,第一个元素自然等于 L,差值也需要尽可能小且升序,那么只能是公差为 1 的等差数列。
设长度为 n,那么等差数列的项数为 n - 1,且 a1 = L,an <= R。

 可以使用二分求解 n,当然也可以根据数据范围暴力枚举 n。

二分代码

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
using LL = long long;

void slove()
{
    int a, b; cin >> a >> b;
    int l = 1, r = 1e9;
    while (l < r)
    {
        int mid = l + r + 1>> 1;
        if ((LL) mid * (mid - 1) <= 2 * (b - a)) l = mid;
        else r = mid - 1;
    }
    
    cout << l << endl;
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t; cin >> t;
    while (t--) slove();
    return 0;
}

暴力代码

#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<cmath>
using namespace std;
using LL = long long;

void slove()
{
    LL l, r; cin >> l >> r;
    LL y = 2 * (r - l);
    LL x = sqrt(y);
    
    LL res = 0;
    for (int i = x; i <= 1e5; i++)
        if ((LL) i * (i - 1) <= y)
            res = i;
    cout << res << endl;
}  

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t; cin >> t;
    while (t--) slove();
    return 0;
}

D

对于任意 i,可以到达 a[i] 位置,记录 i 可以到达的位置,将这些位置看作一个集合,以集合中任意一个为起点,且可以到达集合中任意一个位置,那么也可以得到集合中所有的黑色。
使用并查集,使用一个 cnt 数组记录以 i 为根节点的集合中有多少黑色,每次在合并节点的时候维护 cnt 数组
注意:下标需要从 1 开始

代码

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
using LL = long long;

const int N = 2e5 + 10;
int p[N], cnt[N];

int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

void slove()
{
    memset(cnt, 0, sizeof cnt);
    int n; cin >> n;
    for (int i = 0; i <= n; i++) p[i] = i;
    vector<int> a(n + 10);
    
    for (int i = 1; i <= n; i++) cin >> a[i];
    string str; cin >> str;
    str = " " + str;
    
    for (int i = 1; i <= n; i++)
        cnt[i] = str[i] == '0';
    
    for (int i = 1; i <= n; i++)
    {
        int pa = find(i), pb = find(a[i]);
        if (pa != pb)
        {
            p[pa] = pb;
            cnt[pb] += cnt[pa];
        }
    }
    
    for (int i = 1; i <= n; i++)
    {
        int pa = find(i);
        cout << cnt[pa] << " ";
    }
    cout << endl;
    
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t; cin >> t;
    while (t--) slove();
    return 0;
}

E

最多只能执行删除操作一次,且最后字符串长度必须为偶数,所以删除操作在长度为奇数时执行。
当长度为偶数时,不执行删除操作。那么不需要替换的是出现次数最多的字母。
当长度为奇数时,必须执行删除操作。  枚举删除的位置 i,i 之前的奇偶不需要转变, i 之后的奇数位置变为偶数位置,偶数位置变为奇数位置。
 

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
using LL = long long;


void slove()
{
    int n; cin >> n;
    string str; cin >> str;
    
    if (n & 1)
    {
        vector<vector<int>> pre(2, vector<int>(26));
        vector<vector<int>> suf(2, vector<int>(26));
        for (int i = n - 1; i >= 0; i--)
            suf[i % 2][str[i] - 'a']++;
            
        int ans = 1e9;
        for (int i = 0; i < n; i++)
        {
            suf[i % 2][str[i] - 'a']--;
            int res = n;
            for (int k = 0; k <= 1; k++)
            {
                int maxv = 0;
                for (int j = 0; j < 26; j++)
                {
                    maxv = max(maxv, pre[k][j] + suf[1 - k][j]);  // 后面奇偶互换
                }
                res -= maxv;
            }
            pre[i % 2][str[i] - 'a']++;
            ans = min(ans, res);
        }
        cout << ans << endl;
    }
    else
    {
        vector<vector<int>> a(2, vector<int>(26));
        for (int i = 0; i < n; i++)
            a[i % 2][str[i] - 'a']++;
            
        int res = n;
        for (int i = 0; i <= 1; i++)
        {
            int maxv = 0;
            for (int j = 0; j < 26; j++)
                maxv = max(maxv, a[i][j]);
            res -= maxv;
        }
        cout << res << endl;
    }
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t; cin >> t;
    while (t--) slove();
    return 0;
}

F

这题就是一个逆元的使用,主要溢出就行

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
#include <map>
#include <set>
using namespace std;
using LL = long long;
const int MOD = 1e9 + 7;

LL inv(LL a)
{
    LL res = 1;
    int k = MOD - 2;
    while (k)
    {
        if (k & 1) res = res * a % MOD;
        a = a * a % MOD;
        k >>= 1;
    }
    return res;
}

void slove()
{
    int n; cin >> n;
    LL m = 0;
    vector<int> a(n + 10);
    for (int i = 0; i < n; i++) 
    {
        cin >> a[i];
        m += a[i];
    }
    
    LL res = 0;
    for (int i = 0; i < n; i++)
    {
        m -= a[i];
        res = (res + (m % MOD)* (LL) a[i] % MOD) % MOD;
    }
    
    LL Q = ((LL) n * (n - 1) / 2) % MOD;
    cout << (res * inv(Q) % MOD) << endl;
}

int main()
{
    int t; cin >> t;
    while (t--) slove();
    return 0;
}

G

进行任意次操作之后,最小可以得到一个由最大公约数 g 的整数倍数组。
为了求得最小mex,需要尽量将数组中的元素不重复的最小,那么就是由 g 构成的整数倍数组
相邻两个元素相差 g - 1 个元素,那么可以枚举得到最小 mek。
需要特别处理只有一个元素的情况。

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
using LL = long long;

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

int main()
{
    int t; cin >> t;
    while (t--) 
    {
        int n, k; cin >> n >> k;
        vector<LL> a(n + 10, 0);
        int g = 0;
        for (int i = 0; i < n; i++)
        {
            cin >> a[i];
            g = gcd(g, (int) a[i]);
        }
        
        if (n == 1)
        {
            if (a[0] >= k)
                cout << k - 1 << endl;
            else 
            {
                cout << k << endl;
            }
            continue;
        }
        
        for (int i = 0; i < n; i++)
            a[i] = (LL) i * g;

        LL res = 0;
        for (int i = 1; i < n; i++)
        {
            if (k <= g - 1) break;
            
            k -= g - 1;
            res = a[i];
        }
        cout << res + k << endl;
        
    }
    return 0;
}

H

对于任意一个数组中的大于 x 元素,可以执行任意次减 x 的操作,那么最后的结果是 mod(x) 的值。为了使中位数最小,自然每一个元素都得减 x 直至最小,所以中位数的取值范围 = [0, x - 1]。

二分答案,当 mid 前面的元素个数大于数组长度的一半时,可以缩小 r。更加题目定义,当数组长度为偶数时,中位数取后面那个,那么二分目标值 t = n / 2 + 1。

求某个值前面的元素个数,可以使用前缀和。预处理每一个元素出现的次数,再枚举 n,因为 a[i] <= n;计算出现次数的前缀和。
由于最终出现的次数是基于 mod(x),那么可以分段处理,枚举每一段的起点,也就是说 x 的整数倍。

代码

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;
using LL = long long;

void slove()
{
    int n, q; cin >> n >> q;
    vector<int> a(n + 10, 0);
    vector<LL> cnt(n + 10, 0);
    for (int i = 0 ; i < n; i++)
    {
        cin >> a[i];
        cnt[a[i]]++;
    }
    for (int i = 1; i <= n; i++)
    {
        cnt[i] += cnt[i - 1];
    }
    
    vector<int> res(n + 10, 0);
    
    for (int x = 1; x <= n; x++)
    {
        int l = 0, r = x;
        while (l < r)
        {
            int mid = l + r >> 1;
            LL c = cnt[mid];
            
            for (int k = 1; k * x <= n; k++)
            {
                c += cnt[min(k * x + mid, n)] - cnt[k * x - 1];
            }
            int tmp = n / 2 + 1;
            if (c < tmp) l = mid + 1;
            else r = mid;
        }
        res[x] = r;
    }
    
    while (q--)
    {
        int x; cin >> x;
        cout << res[x] << " ";
    }
    cout << endl;
    
    
}

int main()
{
    int t; cin >> t;
    while (t--) slove();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值