量化投资在近些年来成为了金融行业中的一个热点,在做量化之前需要先获取到市场的行情数据,今天来介绍一个python接口tushare,通过该接口可以获取到大量的金融数据,涵盖了股票,基本面数据,宏观经济数据等,并且在不断的更新中。
1.安装教程
可以将tushare作为python的一个三方库,提前pip在环境之中,之后通过如下代码导入:
import tushare as ts
2.简单函数
1.获取股票的历史行情,可以通过参数设置获取日k线、周k线、月k线,以及5分钟、15分钟、30分钟和60分钟k线数据。不过需要注意的是,该接口只能获取近三年的数据。
ts.get_hist_data()
主要参数说明
code:股票代码,即6位数字代码,或者指数代码(sh=上证指数 sz=深圳成指 hs300=沪深300指数 sz50=上证50 zxb=中小板 cyb=创业板)
start:开始日期,格式YYYY-MM-DD
end:结束日期,格式YYYY-MM-DD
ktype:数据类型,D=日k线 W=周 M=月 5=5分钟 15=15分钟 30=30分钟 60=60分钟,默认为D
代码演示如下:
data = ts.get_hist_data('600519', start='2020-01-01', end='2020-02-01')
print(data.head())
2. 基本面数据获取
基本面类数据提供所有股票的基本面情况,包括股本情况、业绩预告和业绩报告等。
ts.get_stocks_basic()
获取沪深上市公司基本情况。属性包括:
code,代码
name,名称
industry,所属行业
area,地区
pe,市盈率
outstanding,流通股本(亿)
totals,总股本(亿)
totalAssets,总资产(万)
liquidAssets,流动资产
fixedAssets,固定资产
reserved,公积金
reservedPerShare,每股公积金
esp,每股收益
bvps,每股净资
pb,市净率
timeToMarket,上市日期
undp,未分利润
perundp, 每股未分配
rev,收入同比(%)
profit,利润同比(%)
gpr,毛利率(%)
npr,净利润率(%)
holders,股东人数
- 宏观经济数据
宏观经济数据提供国内重要的宏观经济数据,目前只提供比较常用的宏观经济数据,通过简单的接口调用可获取相应的DataFrame格式数据,大项主要包括以下类别:
金融信息数据
国民经济数据
价格指数数据
景气指数数据
对外经济贸易数据
存款利率调用方法
ts.get_deposit_rate()
返回值为: date, deposit_type, rate
贷款利率调用方法
ts.get_loan_rate()
返回值为: date, loan_type, rate