def train_clf2(train_data, train_tags):
#clf = SVC(kernel = 'linear')#default with 'rbf'
clf = LinearSVC(C=1100.0)#default with 'rbf'
clf.fit(train_data,train_tags)
return clf
def evaluate(actual, pred):
m_precision = metrics.precision_score(actual, pred, average="macro")
m_recall = metrics.recall_score(actual, pred, average="macro")
print 'precision:{0:.3f}'.format(m_precision)
print 'recall:{0:0.3f}'.format(m_recall)
print 'f1-score:{0:.8f}'.format(metrics.f1_score(actual,pred, average="macro"));
#训练并测试
clf = train_clf2(X_train, y_train)
pred = clf.predict(X_test)
print pred
print y_test
evaluate(y_test, pred)
scikit-learn评估结果
最新推荐文章于 2022-12-22 23:09:08 发布
本文介绍了一种使用线性支持向量分类器(LinearSVC)进行模型训练的方法,并展示了如何通过精度、召回率及F1分数来评估模型的表现。代码中详细地实现了从模型训练到预测再到性能指标计算的全过程。
2万+

被折叠的 条评论
为什么被折叠?



