scikit-learn评估结果

本文介绍了一种使用线性支持向量分类器(LinearSVC)进行模型训练的方法,并展示了如何通过精度、召回率及F1分数来评估模型的表现。代码中详细地实现了从模型训练到预测再到性能指标计算的全过程。
def train_clf2(train_data, train_tags):
    #clf = SVC(kernel = 'linear')#default with 'rbf'
    clf = LinearSVC(C=1100.0)#default with 'rbf'
    clf.fit(train_data,train_tags)
    return clf

def evaluate(actual, pred):
    m_precision = metrics.precision_score(actual, pred, average="macro")
    m_recall = metrics.recall_score(actual, pred, average="macro")
    print 'precision:{0:.3f}'.format(m_precision)
    print 'recall:{0:0.3f}'.format(m_recall)
    print 'f1-score:{0:.8f}'.format(metrics.f1_score(actual,pred, average="macro"));

#训练并测试
clf = train_clf2(X_train, y_train)

pred = clf.predict(X_test)
print pred
print y_test
evaluate(y_test, pred)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值