可持久化数据结构学习笔记

前言

这篇文章详细地介绍了 OI 竞赛常用的可持久化数据结构,部分图片尺寸过大,建议单击图片放大观看。转载此文章的任何部分均需注明出处。



1 可持久化线段树

1.1 问题引入

您需要写一个数据结构,维护一个数列 a [ 1... N ] a[1...N] a[1...N],支持以下操作:
输入 l r k l ≤ r , k ≤ r − l + 1 l\leq r,k\leq r-l+1 lr,krl+1),求 a [ l . . . r ] a[l...r] a[l...r] 中第 k k k 小的数。

这就是经典的 “静态区间第 k 小” 问题。

可持久化线段树(Persistent Segment Tree)可以很好地解决这个问题。在学习可持久化线段树时,我们首先要了解权值线段树。

1.2 权值线段树

权值线段树是一种维护值而非下标的线段树,为了方便理解,有时也被称作 “值域线段树”。

x x x 是一权值线段树上的一个点,它维护的区间是 [ x . l , x . r ] [x.l,x.r] [x.l,x.r],数据是 x . d x.d x.d,则它表示的意思是:原数组中,值在区间 [ x . l , x . r ] [x.l,x.r] [x.l,x.r] 内的数一共有 x . d x.d x.d 个。

举个例子。有一个数组 a [ ] = { 1 , 5 , 3 , 8 } a[]=\{1,5,3,8\} a[]={1,5,3,8},则它的权值线段树是
在这里插入图片描述
权值线段树可以解决整个区间的查询问题。换句话说,当 l = 1 , r = N l=1,r=N l=1,r=N 时,我们就可以用权值线段树求解了。

那如果 l ≠ 1 l\neq1 l=1 r ≠ N r\neq N r=N,我们又该怎么办呢?

一种很显然的想法就是,我建 N ( N + 1 ) 2 \frac {N(N+1)}2 2N(N+1) 棵权值线段树,也就是说, ∀ 1 ≤ l ≤ r ≤ N \forall 1\leq l\leq r\leq N 1lrN,我都建一棵权值线段树维护 a [ l . . . r ] a[l...r] a[l...r]。这样做的话空间复杂度是 T ( N 3 ) T(N^3) T(N3),不能接受。而且这样做的话,光是建树就会导致超时。

不难发现,权值线段树是可加减的。也就是说,我可以只开 N N N 棵权值线段树,第 i i i 棵维护 a [ 1... i ] a[1...i] a[1...i] 范围的数(这里用了前缀和思想)。如果查询 [ l , r ] [l,r] [l,r] 区间,就用第 r r r 棵树减去第 l − 1 l-1 l1 棵树即可。
在这里插入图片描述
时间复杂度 O ( N 2 + M log ⁡ N ) O(N^2+M\log N) O(N2+MlogN),空间复杂度 T ( N 2 ) T(N^2) T(N2),仍然不够优秀。

1.3 可持久化线段树

观察上面的四棵树。不难发现,第 i i i 棵树与第 i − 1 i-1 i1 棵树只有一条链不一样,其余部分完全相同。那么,我们能不能在这里做点文章,压缩时间、空间复杂度呢?

答案是肯定的。我们每次建树时,不需要新建一棵完整的树,只需要在原来的树上加一条链就行了。

还是以 a [ ] = { 1 , 5 , 3 , 8 } a[]=\{1,5,3,8\} a[]={1,5,3,8} 为例,画出可持久化线段树:
在这里插入图片描述
最后一棵就是最终形态的可持久化线段树了。时间复杂度 O ( N log ⁡ N ) O(N\log N) O(NlogN),空间复杂度 T ( N log ⁡ N ) T(N\log N) T(NlogN)

至此,可持久化线段树的基本内容已经讲解完毕了,我们现在已经可以解决文首提出的问题了。

1.4 例题

静态区间第 k 小问题 如题,给定 N N N 个整数构成的序列,将对于指定的闭区间查询其区间内的第 K K K 小值。

将两棵可持久化线段树相减(容易想到,如果将第 r r r 棵树减去第 l − 1 l-1 l1 棵树,那结果就是 [ l , r ] [l,r] [l,r] 区间的权值线段树了)。从根节点开始,往下遍历,若左子树维护区间的数的个数 d < K d<K d<K,则走向左儿子,否则走向右儿子;重复以上操作,直到走到叶子节点,该节点的下标即为答案。

参考代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

const int MAXN=200010;

int n,m;
struct index{
	int x,y;
	friend bool operator<(const index a,const index b){
		return a.y<b.y;
	}
}a[MAXN];
int b[MAXN];
int mp[MAXN];
int sx,sy,sd;

inline int read(){
	int x=0; char c;
	do c=getchar(); while(c<'0'||c>'9');
	while(c>='0'&&c<='9')
		x=x*10+c-48,c=getchar();
	return x;
}
struct PreSegTree{
	struct index{
		int l,r,ls,rs,d;
		index(){
			l=r=ls=rs=d=0;
		}
	}e[MAXN*40];
	int len;
	int root[MAXN];
	PreSegTree(){
		len=0;root[0]=1;
	}
	void buildtree(int l,int r){
		int me=++len;
		e[me].l=l;e[me].r=r;
		if(l==r) return;
		int mid=(l+r)/2;
		e[me].ls=len+1;buildtree(l,mid);
		e[me].rs=len+1;buildtree(mid+1,r);
	}
	void grow(int rt,int x){
		int l=e[rt].l,r=e[rt].r,me=++len;
		e[me].l=l;e[me].r=r;
		if(l==r){
			e[me].d=e[rt].d+1;
			return;
		}
		int mid=(l+r)/2;
		if(x<=mid){
			e[me].ls=len+1;e[me].rs=e[rt].rs;
			grow(e[rt].ls,x);
		}else{
			e[me].ls=e[rt].ls;e[me].rs=len+1;
			grow(e[rt].rs,x);
		}
		e[me].d=e[e[me].ls].d+e[e[me].rs].d;
	}
	void insert(int x,int d){
		root[x]=len+1;
		grow(root[x-1],d);
	}
	int query(int rootl,int rootr,int k){
		int LS=e[rootl].ls,RS=e[rootr].ls;
		int D=e[RS].d-e[LS].d;
		if(e[rootl].l==e[rootl].r) return e[rootl].r;
		if(k<=D) return query(LS,RS,k);
		else return query(e[rootl].rs,e[rootr].rs,k-D);
	}
}T;
int main(){
	n=read();m=read();
	T.buildtree(1,n);
	for(int i=1;i<=n;++i)
		a[i].x=i,a[i].y=read();
	sort(a+1,a+n+1);
	int tmp=0,last=-0x3f3f3f3f;
	for(int i=1;i<=n;++i){
		if(a[i].y!=last){
			++tmp;
			mp[tmp]=a[i].y;
		}
		b[a[i].x]=tmp;
		last=a[i].y;
	}
	for(int i=1;i<=n;++i)
		T.insert(i,b[i]);
	for(int i=1;i<=m;++i){
		sx=read();sy=read();sd=read();
		printf("%d\n",mp[T.query(T.root[sx-1],T.root[sy],sd)]);
	}
}

2 可持久化数组

2.1 问题引入

你需要维护这样的一个长度为 N N N 的数组,支持如下几种操作:

  1. 在某个历史版本上修改某一个位置上的值;
  2. 访问某个历史版本上的某一位置的值。

此外,每进行一次操作(对于操作 2,即为生成一个完全一样的版本,不作任何改动),就会生成一个新的版本。版本编号即为当前操作的编号(从 1 开始编号,版本 0 表示初始状态数组)

2.2 问题解决

算法 1 我们可以考虑对每一个版本开一个数组,这就是最暴力的打法了。

算法 2 高级一点,我们可以考虑对每一个版本建一棵线段树,查询时在线段树上查询,这样的效率还不如一个暴力数组。

算法 3 考虑用可持久化线段树维护每个位置上的值,也就是说每修改一次就加一条链。查询操作与上文类似,在此不再赘述。

时间复杂度 O ( ( N + M ) log ⁡ N ) O((N+M)\log N) O((N+M)logN),空间复杂度 T ( N + M log ⁡ N ) T(N+M\log N) T(N+MlogN)

2.3 参考代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

const int MAXN=1000010;

int n,m;
int sx,sy,sc,sd;
int b[MAXN];

inline int read(){
	int x=0,f=0; char c;
	do {c=getchar(); if(c=='-') f=1;} while(c<'0'||c>'9');
	while(c>='0'&&c<='9')
		x=x*10+c-48,c=getchar();
	return f?-x:x;
}
struct PreSegTree{
	struct index{
		int l,r,ls,rs,d;
		index(){
			l=r=ls=rs=d=0;
		}
	}e[MAXN*25];
	int len;
	int root[MAXN];
	PreSegTree(){
		len=0;root[0]=1;
	}
	void buildtree(int l,int r){
		int me=++len;
		e[me].l=l;e[me].r=r;
		if(l==r){
			e[me].d=b[l];
			return;
		}
		int mid=(l+r)/2;
		e[me].ls=len+1;buildtree(l,mid);
		e[me].rs=len+1;buildtree(mid+1,r);
	}
	void grow(int rt,int x,int d){
		int l=e[rt].l,r=e[rt].r,me=++len;
		e[me].l=l;e[me].r=r;
		if(l==r){
			if(d==-1) e[me].d=e[rt].d;
			else e[me].d=d;
			return;
		}
		int mid=e[e[rt].ls].r;
		if(x<=mid){
			e[me].ls=len+1;e[me].rs=e[rt].rs;
			grow(e[rt].ls,x,d);
		}else{
			e[me].ls=e[rt].ls;e[me].rs=len+1;
			grow(e[rt].rs,x,d);
		}
	}
	void insert(int num,int rt,int x,int d){
		root[num]=len+1;
		grow(root[rt],x,d);
	}
	int query(int root,int x){
		if(e[root].l==e[root].r) return e[root].d;
		int ls=e[root].ls,rs=e[root].rs;
		int mid=e[ls].r;
		if(x<=mid) return query(ls,x);
		else return query(rs,x);
	}
}T;
int main(){
	n=read();m=read();
	for(int i=1;i<=n;++i)
		b[i]=read();
	T.buildtree(1,n);
	for(int i=1;i<=m;++i){
		sx=read();sy=read();sc=read();
		if(sy==1){
			sd=read();
			T.insert(i,sx,sc,sd);
		}else{
			printf("%d\n",T.query(T.root[sx],sc));
			T.insert(i,sx,sc,-1);
		}
	}
}

3 支持修改的可持久化线段树

3.1 问题引入

我们不妨把 1.1 节提出的问题强化一下。

Dynamic Rankings (动态区间第 k 小问题)您需要写一个数据结构,维护一个数列 a [ 1... N ] a[1...N] a[1...N],支持以下操作:

  1. 1 x k 1 ≤ x ≤ N 1\leq x\leq N 1xN),将 a [ x ] a[x] a[x] 的值设为 k k k
  2. 2 l r k l ≤ r , k ≤ r − l + 1 l\leq r,k\leq r-l+1 lr,krl+1),求 a [ l . . . r ] a[l...r] a[l...r] 中第 k k k 小的数。

如果修改可持久化线段树,单次操作的时间复杂度变成 O ( N log ⁡ N ) O(N\log N) O(NlogN),这显然不是我们希望看到的。

那么问题来了,我们怎样才能让可持久化线段树支持修改呢?

3.2 问题解决

再看一次我们建的 N N N 棵权值线段树。
在这里插入图片描述
不难想到,修改第 i i i 棵树的的点时,需要同时修改第 i + 1 , i + 2 , . . . , N i+1,i+2,...,N i+1,i+2,...,N 棵权值线段树。

考虑一下什么数据结构可以加速这种区间修改过程,不难想到树状数组,尝试用树状数组维护这 N N N 棵权值线段树:
在这里插入图片描述
请注意:权值线段树内的点的数据以树状数组的实际情况为准!

这样我们就能使用差分思想实现区间修改了。时间复杂度 O ( N log ⁡ 2 N ) O(N\log^2N) O(Nlog2N),空间复杂度 T ( N 2 ) T(N^2) T(N2)。使用动态开点优化空间复杂度后,复杂度降为 T ( N log ⁡ 2 N ) T(N\log^2N) T(Nlog2N)

3.3 参考代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<map>
#include<algorithm>
using namespace std;

const int MAXN=200010;
int n,m,N;
char str[10];
int sx[MAXN],sy[MAXN],sd[MAXN];
int a[MAXN],s[MAXN];
int bk[MAXN];
int to[MAXN];
map<int,int> mp;

inline int read(){
	int x=0; char c;
	do c=getchar(); while(c<'0'||c>'9');
	while(c>='0'&&c<='9')
		x=x*10+c-48,c=getchar();
	return x;
}
int lowbit(int x){
	return x&(-x);
}
struct Treearray{
	struct Index{
		int l,r,d;
		Index *ls,*rs;
		Index(){
			l=r=d=0;ls=rs=NULL;
		}
	};
	Index *root[MAXN],*me1[MAXN],*me2[MAXN];
	int len1,len2;
	//权值线段树类 
	struct Segtree{
		//新建一条链 
		void insert(Index*me,int x,int d){
			//到达叶子节点,结束 
			if((x==me->l)&&(x==me->r)){
				me->d+=d;
				return;
			}
			const int mid=(me->l+me->r)/2;
			if(x<=mid){
				//目标节点在左子树内
				//没有左儿子,新建节点
				if(NULL==me->ls){
					me->ls=new Index();
					me->ls->l=me->l;me->ls->r=mid;
				}
				insert(me->ls,x,d);
			}else{
				if(NULL==me->rs){
					me->rs=new Index();
					me->rs->l=mid+1;me->rs->r=me->r;
				}
				insert(me->rs,x,d);
			}
			//更新自己的数据
			me->d=0;
			if(NULL!=me->ls) me->d+=(me->ls->d);
			if(NULL!=me->rs) me->d+=(me->rs->d);
		}
	}T[MAXN];
	//建立树状数组,初始化每棵线段树 
	void init(){
		for(int i=1;i<=n;++i){
			root[i]=new Index();
			root[i]->l=1;root[i]->r=N;
		}
	}
	//将a[x]的值设为d 
	void change(int x,int d){
		//在树状数组中找到所有管理x位置的点,把它们insert一遍 
		for(int i=x;i<=n;i+=lowbit(i)){
			if(a[x]) T[i].insert(root[i],a[x],-1);
			T[i].insert(root[i],d,1);
		}
		a[x]=d;
	}
	//返回每棵树上的当前位置的左子树的数据之和 
	int sum(){
		int cnt=0;
		for(int i=1;i<=len2;++i)
			if(me2[i]!=NULL&&me2[i]->ls!=NULL) cnt+=me2[i]->ls->d;
		for(int i=1;i<=len1;++i)
			if(me1[i]!=NULL&&me1[i]->ls!=NULL) cnt-=me1[i]->ls->d;
		return cnt;
	}
	//查询a[l...r]中第k小的数 
	int query(int l,int r,int k){
		//求出左子树数据之和,与k比较 
		int d=sum(),mid=(l+r)/2;
		//到达叶子节点,结束
		if(l==r) return l; 
		if(k<=d){//进入左子树 
			for(int i=1;i<=len1;++i)
				if(me1[i]!=NULL) me1[i]=me1[i]->ls;
			for(int i=1;i<=len2;++i)
				if(me2[i]!=NULL) me2[i]=me2[i]->ls;
			return query(l,mid,k);
		}else{//进入右子树 
			for(int i=1;i<=len1;++i)
				if(me1[i]!=NULL) me1[i]=me1[i]->rs;
			for(int i=1;i<=len2;++i)
				if(me2[i]!=NULL) me2[i]=me2[i]->rs;
			return query(mid+1,r,k-d);
		}
	}
	//初始化后调用query函数 
	int work(int l,int r,int k){
		len1=len2=0;
		for(int i=r;i>0;i-=lowbit(i))
			me2[++len2]=root[i];
		for(int i=l-1;i>0;i-=lowbit(i))
			me1[++len1]=root[i];
		return query(1,N,k);
	}
}T;
int main(){
	memset(a,0,sizeof(a));
	memset(sd,-1,sizeof(sd));
	n=read();m=read();
	for(int i=1;i<=n;++i)
		s[i]=read();
	for(int i=1;i<=m;++i){
		scanf("%s",str);sx[i]=read();sy[i]=read();
		if('C'!=str[0]) sd[i]=read();
	}
	int blen=0,now=0,last=-1;
	for(int i=1;i<=n;++i)
		bk[++blen]=s[i];
	for(int i=1;i<=m;++i)
		if(-1==sd[i]) bk[++blen]=sy[i];
	sort(bk+1,bk+blen+1);
	for(int i=1;i<=blen;++i){
		if(bk[i]!=last){
			++now;
			last=bk[i];
		}
		mp[bk[i]]=now;to[now]=bk[i];
	}
	N=now;
	T.init();
	for(int i=1;i<=n;++i)
		T.change(i,mp[s[i]]);
	for(int i=1;i<=m;++i)
		if(-1==sd[i])
			T.change(sx[i],mp[sy[i]]);
		else
			printf("%d\n",to[T.work(sx[i],sy[i],sd[i])]);
		
}

4 可持久化并查集

4.1 问题引入

luogu P3402 【模板】可持久化并查集)你有 n n n 个集合,现在有 m m m 个操作:

  1. 1 a b 合并 a,b 所在集合
  2. 2 k 回到第 k 次操作之后的状态(查询算作操作)
  3. 3 a b 询问 a,b 是否属于同一集合,是则输出1否则输出0

4.2 问题解决

这道题中不能使用路径压缩节约时间,因为修改祖宗的 fa[] 的时间复杂度是不可接受的。

那我们就只能打一个 O ( N 2 ) O(N^2) O(N2) 的并查集了吗?不不不,设计数组 d e e p [ i ] deep[i] deep[i] 表示 i i i 所在集合的大小,每次将小的集合的父亲设置为大的集合(按秩合并),就能保证并查集时间复杂度是 O ( N α ( N ) ) O(N\alpha(N)) O(Nα(N)),总的时间复杂度是 O ( N log ⁡ N α ( N ) ) O(N\log N\alpha(N)) O(NlogNα(N))

4.3 参考代码

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值