凯利公式及其证明

凯利公式 设一双人游戏非赢即败,且你赢的概率为 p p p,输的概率为 q   ( q = 1 − p ) q\ (q=1-p) q (q=1p),净赔率为 b b b。则下次投入游戏的最优的资产比为 f = p b − q b f=\frac{pb-q}b f=bpbq
f ≤ 0 f\leq0 f0 时,该游戏不值得参与。


证明: 设进行 n n n 次游戏,第 n n n 次游戏后拥有的资产为 C n C_n Cn

(1) 当第 n n n 次游戏获胜时, C n = C n − 1 × ( 1 + b f ) C_n=C_{n-1}\times(1+bf) Cn=Cn1×(1+bf)
(2) 当第 n n n 次游戏失败时, C n = C n − 1 × ( 1 − f ) C_n=C_{n-1}\times(1-f) Cn=Cn1×(1f)

设共赢了 W W W 把,输了 L L L 把( W + L = n W+L=n W+L=n),则 C n = C 0 × ( 1 + b f ) W ⋅ ( 1 − f ) L C_n=C_0\times(1+bf)^W·(1-f)^L Cn=C0×(1+bf)W(1f)L
两边取 log ⁡ \log log 底数,得
log ⁡ ( C n C 0 ) 1 n = W n log ⁡ ( 1 + b f ) + L n log ⁡ ( 1 − f ) \log(\frac{C_n}{C_0})^\frac1n=\frac Wn\log(1+bf)+\frac Ln\log(1-f) log(C0Cn)n1=nWlog(1+bf)+nLlog(1f)

n → ∞ n\rightarrow∞ n 时, W n = p \frac Wn=p nW=p L n = q = 1 − p \frac Ln=q=1-p nL=q=1p
lim ⁡ n → ∞ log ⁡ ( C n C 0 ) 1 n = p ⋅ log ⁡ ( 1 + b f ) + ( 1 − p ) ⋅ log ⁡ ( 1 − f ) \lim_{n\rightarrow∞}\log(\frac{C_n}{C_0})^\frac 1n=p·\log(1+bf)+(1-p)·\log(1-f) nlimlog(C0Cn)n1=plog(1+bf)+(1p)log(1f)

根据高等数学知识,如果一个函数的一阶导数为 0 0 0,二阶导数小于 0 0 0,则这个函数有最大值。经推导,函数 y = p ⋅ log ⁡ ( 1 + b f ) + ( 1 − p ) ⋅ log ⁡ ( 1 − f ) y=p·\log(1+bf)+(1-p)·\log(1-f) y=plog(1+bf)+(1p)log(1f)有最大值。它的一阶导数为 y ′ = p b 1 + b f − 1 − p 1 − f y'=\frac{pb}{1+bf}-\frac{1-p}{1-f} y=1+bfpb1f1p令它为 0 0 0 f = p b − q b f=\frac{pb-q}{b} f=bpbq证毕。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值