最小的k个数

题目描述

输入n个整数,找出其中最小的k个数。

注意:

  • 数据保证k一定小于等于输入数组的长度;
  • 输出数组内元素请按从小到大顺序排序;

样例

Input:[1,2,3,4,5,6,7,8] , k=4
Output:[1,2,3,4]

解题思路

  • 描述

    我们定义一个count用于计数,一个val用于存储计数的数字。遍历数组,如果count为0,则将当前值赋值val,然后count++;如果count不为0,如果当前值等于val,则count++,否则count–。

    本题目可通过维护一个长度为k的大顶堆实现。

    STL中的priority_queue(优先队列) 本质上就是一个大顶堆。

  • 实现代码:

    /*
    包含头文件:
    #include <queue>
    */
    
    vector<int> getLeastNumbers_Solution(vector<int> input, int k) {
        priority_queue<int> heap;
        for(int i=0; i < input.size();i++)
        {
            heap.push(input[i]);
            if(heap.size() > k)
            {
                heap.pop();
            }
        }
    
        vector<int> res;
        while(heap.size())
        {
            res.push_back(heap.top());
            heap.pop();
        }
    
        reverse(res.begin(),res.end());
        return res;
    
    }
    
  • 复杂度分析

    时间复杂度: O ( n l o g k ) O(nlog^k) O(nlogk)

    空间复杂度: ≈ O ( k ) \approx O(k) O(k)

在C语言,找到一组整数最小k个数可以采用多种算法实现,其一种常见的方法是使用优先队列(通常称为堆),特别是大顶堆(Max Heap)。这里提供一个简单的示例,使用大顶堆结构: ```c #include <stdio.h> #include <stdlib.h> // 定义一个数组大小 #define MAX_SIZE 100 // 结构体表示堆节点,包含值和索引 typedef struct { int value; int index; } MinHeapNode; // 大顶堆实现,用于存储前k小的元素 void max_heapify(int arr[], int n, int i) { int largest = i; // 初始化最大值位置为根节点 int left = 2 * i + 1; // 左孩子 int right = 2 * i + 2; // 右孩子 if (left < n && arr[left] > arr[largest]) { largest = left; } if (right < n && arr[right] > arr[largest]) { largest = right; } if (largest != i) { // 如果有更大值 swap(&arr[i], &arr[largest]); // 交换 max_heapify(arr, n, largest); // 递归调整子树 } } // 建立大顶堆 void build_max_heap(int arr[], int k) { for (int i = k / 2 - 1; i >= 0; i--) { max_heapify(arr, k, i); } } // 添加新元素到堆并保持堆性质 void insert(int arr[], int n, int k, int new_val, int new_index) { arr[n++] = new_val; // 添加新元素 max_heapify(arr, k, n - 1); // 调整以保持堆 } // 获取最小k个数 void get_min_k(int arr[], int k) { printf("The smallest %d numbers are:\n", k); for (int i = 0; i < k; i++) { printf("%d ", arr[0]); swap(&arr[0], &arr[k - 1]); // 将当前堆顶移到末尾 max_heapify(arr, k - 1, 0); // 更新堆 } } // 主函示例 int main() { int arr[] = {9, 8, 7, 6, 5, 4, 3, 2, 1}; int n = sizeof(arr) / sizeof(arr[0]), k = 3; build_max_heap(arr, k); // 创建初始堆 // 假设我们有新元素插入 insert(arr, n, k, 100, 10); // 新元素:100, 索引:10 get_min_k(arr, k); // 输出前k小 return 0; } ``` 在这个例子,`build_max_heap()`函建立了一个大顶堆,`insert()`函用于添加新元素并维护堆属性,`get_min_k()`函则从堆获取并删除最小的k个元素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值