最短Hamilton路径

该博客探讨了求解带权无向图中起点0到终点n-1的最短Hamilton路径问题。由于是旅行商问题的变种,博主提出了一种降低复杂度的解决方案,通过位运算和动态规划来存储已访问节点信息,将复杂度降至O(2^20 * 20)。博客详细介绍了状态表示和状态转换,并提供了状态转移方程。
摘要由CSDN通过智能技术生成

题目描述

给定一张 n 个点的带权无向图,点从 0 ~ n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

输入格式

第一行输入整数 n。

接下来 n 行每行 n 个整数,其中第 i 行第 j 个整数表示点 i 到 j 的距离(记为a[i,j])。

对于任意的 x,y,z ,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。

输出格式

输出一个整数,表示最短Hamilton路径的长度。

数据范围

1 ≤ n ≤ 20 1≤n≤20 1n20

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值