高等数学-曲线积分与曲面积分

一、曲线积分

(1)弧微分(ds):表示曲线上的微小弧长。它的值是非负的(在尖点和静止点可能为0),在实际应用中,通常被认为是的。

a.若函数表达式为:y=f(x),则:ds=√[(dx)^2+(dy)^2]=√(1+y'^2) dx

b.若函数表达式为:x=x(t),y=y(t),则:ds=√[(dx)^2+(dy)^2]=√[(dx/dt)^2+(dy/dt)^2] dt=√[x'(t)]^2+[y'(t)]^2 dt

c.若函数表达式为:x=x(y),则:ds=√1+[x'(y)]^2 dy

注:

(1)微分的本质:表示曲线上某点处无限小弧长的线性主部。ds与实际微小弧长之间的误差是高阶无穷小。在极限意义下,ds就是无穷小弧长的精确值。

         积分的本质:积分本身是对无穷小量的累加。ds的精确性保证了积分结果的正确性。

(2)取极限时,微分变得准确,同时和式(微分累加得到)可以计算出极限(比如使用定积分计算曲边梯形的面积:令λ=max*1^n Δxi=1/n->0,即n->∞,则可求出极限值)。

有限分时:和式等于近似值

无穷分时:和式的极限值等于精确值

一句话总结:取极限时,微元变得准确,意义相同,理论正确,极限值即准确值。

理解:微分保证无穷小意义下(极限意义)局部的准确值(先近似->取极限->极限状态下得准确值),积分是对无穷小量的累加,在这两种意义下,保证积分结果收敛到准确值。

二、对弧长的曲线积分:

(1)性质:

(2)对弧长积分的计算:

例1:

例2:

注:变换积分弧段L3的起点和终点,对弧长的曲线积分的值不会改变。

例3:

三、对坐标的曲线积分

(1)性质:

(2)对坐标的曲线积分的计算:

例1:

例2:

注:x从3变到0,对应t从1变到0,所以积分下限为1,积分上限为0,注意不要搞错!!

四、格林公式

设平面有界闭区域D由分段光滑闭曲线L围成,函数P(x,y),Q(x,y)在D上具有连续偏导数,则有

∫∫(∂Q/∂x-∂P/∂y)dxdy=∮LP(x,y)dx+Q(x,y)dy

D

其中L是D的取正向的边界。

例1:

例2:

例3:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值