一、曲线积分
(1)弧微分(ds):表示曲线上的微小弧长。它的值是非负的(在尖点和静止点可能为0),在实际应用中,通常被认为是正的。
a.若函数表达式为:y=f(x),则:ds=√[(dx)^2+(dy)^2]=√(1+y'^2) dx
b.若函数表达式为:x=x(t),y=y(t),则:ds=√[(dx)^2+(dy)^2]=√[(dx/dt)^2+(dy/dt)^2] dt=√[x'(t)]^2+[y'(t)]^2 dt
c.若函数表达式为:x=x(y),则:ds=√1+[x'(y)]^2 dy
注:
(1)微分的本质:表示曲线上某点处无限小弧长的线性主部。ds与实际微小弧长之间的误差是高阶无穷小。在极限意义下,ds就是无穷小弧长的精确值。
积分的本质:积分本身是对无穷小量的累加。ds的精确性保证了积分结果的正确性。
(2)取极限时,微分变得准确,同时和式(微分累加得到)可以计算出极限(比如使用定积分计算曲边梯形的面积:令λ=max*1^n Δxi=1/n->0,即n->∞,则可求出极限值)。
有限分时:和式等于近似值
无穷分时:和式的极限值等于精确值
一句话总结:取极限时,微元变得准确,意义相同,理论正确,极限值即准确值。
理解:微分保证无穷小意义下(极限意义)局部的准确值(先近似->取极限->极限状态下得准确值),积分是对无穷小量的累加,在这两种意义下,保证积分结果收敛到准确值。
二、对弧长的曲线积分:
(1)性质:
(2)对弧长积分的计算:
例1:
例2:
注:变换积分弧段L3的起点和终点,对弧长的曲线积分的值不会改变。
例3:
三、对坐标的曲线积分
(1)性质:
(2)对坐标的曲线积分的计算:
例1:
例2:
注:x从3变到0,对应t从1变到0,所以积分下限为1,积分上限为0,注意不要搞错!!
四、格林公式
设平面有界闭区域D由分段光滑闭曲线L围成,函数P(x,y),Q(x,y)在D上具有连续偏导数,则有
∫∫(∂Q/∂x-∂P/∂y)dxdy=∮LP(x,y)dx+Q(x,y)dy
D
其中L是D的取正向的边界。
例1:
例2:
例3: