高等数学-常微分方程

一、一阶微分方程

(1)可分离变量的微分方程:

    解题步骤:

     例1:求微分方程dy/dx=3x^2y的通解。

       1)将方程的变量进行分离:

            dy/y=3x^2dx

        2)两边积分:

             ∫ dy/y=∫ 3x^2 dx

          3)为了方便,直接写成下式:

             lny=x^3+lnC(C为全体正数)

          4)由3)直接得到方程的通解:

              y=Ce^(x^3)(这里需要验证y=0是方程的解,因为y=0是方程的解,所以是C变为任意常数(还用C表示))

              在求通解时,常常略去分离变量时关于分母为0的讨论。

              注:

                    两端可以积分的原理:

   例2:       (2)齐次方程:

      形如dy/dx=φ(y/x)的方程称为齐次方程

       可转化成可分离变量的微分方程,转化方法:

        令u=y/x

        则y=ux

        dy/dx=x(du/dx)+u

         将上式代入方程:

          x(du/dx)+u=φ(u)

          于是,x(du/dx)=φ(u)-u

          此方程是以x为自变量,u为未知函数的可分离变量的微分方程。

注:1/(u-1)-1/u的不定积分为ln|u/u-1|,这里为了方便,直接将绝对值去掉。

(3)一阶线性微分方程:

形如dy/dx+P(x)y=Q(x)的微分方程称为一阶线性微分方程。这里的线性,是指微分方程中关于未知函数y及其导数dy/dx都是一次的。如果Q(x)恒为0,则称该方程为一阶线性齐次微分方程;否则,称该方程为一阶线性非齐次微分方程(这里齐次和齐次方程中的齐次无关)。

1)用分离变量法求一阶线性齐次微分方程:

dy/dx=-P(x)dx

两边积分:

lny=-∫P(x)dx+lnC(这里∫P(x)dx表示P(x)的某个原函数)

从而得方程的通解:

y=Ce^(-∫P(x)dx)

(2)用常数变易法求一阶线性非齐次微分方程的通解:

 

例1:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值