一.特殊的排列组合:
1.在n个不同物体中,可重复地选取r个物体的排列数为: n^r;
2.在n个不同物体中,可重复地选取r个物体的组合数为C(n+r-1, r);
3.在从A={1,2,…n}中取r个不相邻的数进行组合,其组合数为C(n-r+1,r);
4.n个物体中不相同的物体的总数是k个,即n=n1+n2+ ··· +nk,则这几个物体全排列数是: n! / (n1! * n2! * ··· * nk!);
5. 圆周排列(选取的物体不分先后):A(n, r) / r;
6. 项链排列(在圆周排列的基础上,正面向上和反面向上两种方式放置各个数是同一个排列) :A(n, r) / 2r;
二.组合恒等式:
1. C(n, r) = C(n, n-r);
2. C(n,k) = C(n-1, k) + C(n-1, k-1);
3. C(n+r+1, r) = C(n+r, r) + C(n+r-1, r-1) + C(n+r-2, r-2) + ··· + C(n+1, 1) + C(n, 0);
4. C(n, k)C(k, r) = C(n, r)C(n-r, k-r);
5. C(m+n, r) = C(m, 0)C(n, r) + C(m,1)C(n, r-1)+ ··· + C(m, r)C(n, 0);