首先说明斐波那契数列的定义:用F[i] 表示斐波那契数列的第i项,F[1] = 1, F[2] = 1, 当n >= 3时,F[i] = F[i-2] + f[i-1]。
斐波那契恒等式:
1. F[1]^2 + F[2]^2 + F[3]^2 + …… +F[n]^2 = F[n]*f[n+1];
证明:F[1]^2 = F[1] * F[2];
F[2]^2 = F[2] * (F[3] - F[1]) = F[2] * F[3] - F[2] * F[1];
F[3]^2 = F[3] * (F[4] - F[2]) = F[3] * F[4] - F[3] * F[2];
……;
F[n]^2 = F[n] * (F[n + 1] - F[ n-1 ]) = F[n] * F[n+1] - F[n] * F[n - 1];
累加后只剩下F[n] * F[n+1];
2. F[1] + f[2] + f[3] + …… + F[n] = F[n+2] - 1;
证明:F[1] = F[3] - F[2] = F[3] - 1;
F[2] = F[4] - F[3];
F[3[ = F[5[ - F[4];
……;
F[n] = F[n+2] - F[n+1];
累加后只剩下F[n+2] 和 -1;
3. F[1] + F[3] + F[5] + F[2n-1] = F[2n];
证明:F[1] = F[2];
F[3] = F[4] - F[2];
F[5] = F[6] - F[4];
……;
F[2n - 1] = F[2n] - F[2n-2];
累加后只剩下F[2n];