一些斐波那契恒等式及证明。

首先说明斐波那契数列的定义:用F[i] 表示斐波那契数列的第i项,F[1] = 1, F[2] = 1, 当n >= 3时,F[i] = F[i-2] + f[i-1]。

斐波那契恒等式:

1. F[1]^2 + F[2]^2 + F[3]^2 + …… +F[n]^2 = F[n]*f[n+1];

证明:F[1]^2 = F[1] * F[2];

    F[2]^2 = F[2] * (F[3] - F[1]) = F[2] * F[3] - F[2] * F[1];

    F[3]^2 = F[3] * (F[4] - F[2]) = F[3] * F[4] - F[3] * F[2];

    ……;

    F[n]^2 = F[n] * (F[n + 1] - F[ n-1 ]) = F[n] * F[n+1] - F[n] * F[n - 1];

    累加后只剩下F[n] * F[n+1];

2. F[1] + f[2] + f[3] + …… + F[n] = F[n+2] - 1;

证明:F[1] = F[3] - F[2] = F[3] - 1;

     F[2] = F[4] - F[3];

    F[3[ = F[5[ - F[4];

     ……;

    F[n] = F[n+2] - F[n+1];

   累加后只剩下F[n+2] 和 -1;

3. F[1] + F[3] + F[5] + F[2n-1]  = F[2n];

证明:F[1] = F[2];

    F[3] = F[4] - F[2];

    F[5] = F[6] - F[4];

    ……;

    F[2n - 1] = F[2n] - F[2n-2];

    累加后只剩下F[2n];





 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值