TensorFlow实现KNN

下面是用TensorFlow实现KNN,步骤在代码中描述很详细,不过多介绍了。

# encoding:utf-8
import numpy as np
import tensorflow as tf

# 加载mnist数据集
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_Data/data/", one_hot=True)

# 这里从数据集中抽取5000个样本数据作为训练集,200个样本做为测试集,这里Ytr是一个10维ndarray
Xtr, Ytr = mnist.train.next_batch(5000)  
Xte, Yte = mnist.test.next_batch(200)

# tf Graph的输入
xtr = tf.placeholder("float", [None, 784])
xte = tf.placeholder("float", [784])

# 使用L1距离计算最近邻
# tf.neg()给xte中的每个元素取反,这样可以使用tf.add()
distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.neg(xte))), reduction_indices=1)  # 这里reduction_indices=1是计算每一行的和
# 从distance tensor中寻找最小的距离索引
pred = tf.argmin(distance, 0)

accuracy = 0.

# 初始化所有 variables
init = tf.initialize_all_variables()

# Launch  graph
with tf.Session() as sess:
    sess.run(init)

    # 对每个测试样本,计算它的分类类别
    for i in range(len(Xte)):
        # 获得最近邻
        nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i, :]})
        print "nn_indext:", nn_index
        print "Ytr[nn_index]:", Ytr[nn_index]
        print "np.argmax(Ytr[nn_index]):", np.argmax(Ytr[nn_index])
        # 获得测试样本的最近邻类别,并将它与真实类别做比较
        print "Test", i, "Prediction:", np.argmax(Ytr[nn_index]), \
            "True Class:", np.argmax(Yte[i])
        # 计算 accuracy
        if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]):
            accuracy += 1. / len(Xte)
    print "Done!"
    print "Accuracy:", accuracy
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值