自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

风雪夜归子

喜爱机器学习

  • 博客(110)
  • 收藏
  • 关注

原创 从零开始实现遗传算法(用遗传算法求解TSP)

声明:版权所有,转载请联系作者并注明出处: http://blog.csdn.net/u013719780?viewmode=contents知乎专栏: https://www.zhihu.com/people/feng-xue-ye-gui-zi本系列文章的所有源代码都将会开源,需要源代码的小伙伴可以去我的 Github fork!前面我们用遗传算法动手做了两个实验,本篇文章我们再用遗传算法做一个

2017-12-10 20:35:53 1906 2

原创 从零开始实现遗传算法(用遗传算法破解密码)

声明:版权所有,转载请联系作者并注明出处: http://blog.csdn.net/u013719780?viewmode=contents知乎专栏: https://www.zhihu.com/people/feng-xue-ye-gui-zi本系列文章的所有源代码都将会开源,需要源代码的小伙伴可以去我的 Github fork!上一篇文章我们动手实验了用遗传算法求解函数在给定区间的最大值。本篇

2017-12-10 20:32:08 2813 3

原创 从零开始实现遗传算法(用遗传算法求解函数的最大值)

声明:版权所有,转载请联系作者并注明出处: http://blog.csdn.net/u013719780?viewmode=contents知乎专栏: https://www.zhihu.com/people/feng-xue-ye-gui-zi本系列文章的所有源代码都将会开源,需要源代码的小伙伴可以去我的 Githubfork!进化算法进化算法,也被成为是演化算法(evolutionary al

2017-12-05 21:09:55 22834 5

原创 从零开始实现过抽样算法smote

声明:版权所有,转载请联系作者并注明出处: http://blog.csdn.net/u013719780?viewmode=contents知乎专栏: https://www.zhihu.com/people/feng-xue-ye-gui-zi本系列文章的所有源代码都将会开源,需要源代码的小伙伴可以去我的 Github fork!本文将主要详细介绍一下SMOTE(Synthetic Minori

2017-11-13 15:29:38 4499 1

原创 从零开始实现KMedios聚类算法

声明:版权所有,转载请联系作者并注明出处: http://blog.csdn.net/u013719780?viewmode=contents知乎专栏: https://www.zhihu.com/people/feng-xue-ye-gui-zi本系列文章的所有源代码都将会开源,需要源代码的小伙伴可以去我的 Github fork!1. k-medoids算法原理上一篇文章我们详细讲解了 k-me

2017-11-13 15:24:21 1881 1

原创 从零开始实现Kmeans聚类算法

声明:版权所有,转载请联系作者并注明出处: http://blog.csdn.net/u013719780?viewmode=contents知乎专栏: https://www.zhihu.com/people/feng-xue-ye-gui-zi本系列文章的所有源代码都将会开源,需要源代码的小伙伴可以去我的 Github fork!1. Kmeans聚类算法简介由于具有出色的速度和良好的可扩展性,

2017-11-01 14:30:09 72238 5

原创 从零开始实现朴素贝叶斯分类算法(连续特征情形)

声明:版权所有,转载请联系作者并注明出处: http://blog.csdn.net/u013719780?viewmode=contents知乎专栏: https://www.zhihu.com/people/feng-xue-ye-gui-zi朴素贝叶斯算法是基于贝叶斯定理和特征之间条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基

2017-10-29 21:15:39 4245 2

原创 从零开始实现朴素贝叶斯分类算法(离散特征情形)

声明:版权所有,转载请联系作者并注明出处: http://blog.csdn.net/u013719780?viewmode=contents知乎专栏: https://www.zhihu.com/people/feng-xue-ye-gui-zi朴素贝叶斯算法是基于贝叶斯定理和特征之间条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基

2017-10-29 21:09:34 1472

原创 从零开始实现主成分分析(PCA)算法

声明:版权所有,转载请联系作者并注明出处: http://blog.csdn.net/u013719780?viewmode=contents知乎专栏: https://www.zhihu.com/people/feng-xue-ye-gui-zi前面两篇文章详细讲解了线性判别分析LDA,说到LDA,就不能不提到主成份分析,简称为PCA,是一种非监督学习算法,经常被用来进行数据降维、有损数据压缩

2017-10-26 12:17:37 63790 15

原创 从零开始实现线性判别分析(LDA)算法(多类情形)

前文详细阐述了只有二类的情形,假设如果是多类情形,该怎么处理才能保证投影后的类别能够较好的分离呢?我们之前讨论的是如何将nn(特征个数)维降到一维,现在类别多了,一维也许已经不能做到投影后达到较好的分离效果。假设我们有nlabelsn_{labels}个类别,需要kk维向量(基向量)来做投影。将这kk维向量表示为W=(w1,w2,…,wk),wi(i=1,2,…,k)是列向量,W = (w_1, w

2017-10-22 19:10:25 6909

原创 从零开始实现线性判别分析(LDA)算法(二类情形)

线性判别分析线性判别分析(Linear Discriminant Analysis或者Fisher’s Linear Discriminant)简称LDA,是一种监督学习算法。LDA的原理是,将数据通过线性变换(投影)的方法,映射到维度更低纬度的空间中,使得投影后的点满足同类型标签的样本在映射后的空间比较近,不同类型标签的样本在映射后的空间比较远。一、线性判别分析(二类情形)在讲解算法理论之前,先补

2017-10-20 18:27:04 3461 2

原创 从零开始实现KNN分类算法

K近邻分类算法 (K-Nearest Neighbor)KNN分类算法非常简单,该算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在确定分类决策上只依据最邻近K个样本的类别来决定待分样本所属的类别。KNN是一个懒惰算法,也就是说在平时不好好学习,考试(对测试样本分类)时才临阵发力(临时去找k个近邻),因此在预测的时候速度比较慢。KNN

2017-10-17 18:37:12 3605

原创 从零开始实现逻辑回归模型

逻辑回归上一篇文章介绍了线性回归、岭回归、lasso回归和多项式回归模型。这些模型都是广义线性回归模型的具体形式,广义线性回归是一种灵活的框架,比普通线性回归要求更少的假设。这一章,我们讨论广义线性回归模型的具体形式的另一种形式,逻辑回归(logistic regression)。逻辑回归模型在工业界是工程师用的非常多的模型了,比如在CTR预测等项目中被大量使用,之所以用的非常普遍,是因为逻辑回归拥

2017-10-16 16:49:43 3186

原创 从零开始实现线性回归、岭回归、lasso回归、多项式回归模型

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents此系列文章会同时在我的知乎专栏上更新In [6]:import numpy as npimport pandas as pdfrom sklearn import datasetsim

2017-10-15 15:22:49 4181

原创 手把手教你实现线性回归模型

声明:版权所有,转载请联系作者并注明出处 http://blog.csdn.net/u013719780?viewmode=contents最近打算实现一些机器学习算法,一来希望可以帮助一些刚刚入门的小伙伴~其次,通过实现算法,加深自己对算法理论的理解!机器学习(Machine Learning,ML)是一门多领域交叉学科,涉及概率论、统计学、计算机

2017-08-20 22:24:19 12623 1

原创 机器学习实验(十三):90%的准确率,根据中文名字预测性别!

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents               90%的准确率,根据中文名字预测性别!一、概述  性别是人类差异最大的特征之一,不同的性别拥有不同的特征,譬如购物、电视剧、书籍等方面男生和女生的爱好有很大的不同。因此,知道了用户的性别就

2017-08-08 16:50:53 11166 6

原创 tensorflow tutorials(十):用tensorflow实现降噪自编码器(Denoising Auto-Encoder)

声明:版权所有,转载请联系作者并注明出处:  http://blog.csdn.net/u013719780?viewmode=contents降噪自编码器是Pascal Vincent提出来的,有兴趣的童鞋可以看Pascal Vincent的论文原文Stacked Denoising Autoencoders: Learning Useful Representati

2016-12-28 15:54:13 7371

原创 tensorflow tutorials(九):卷积神经网络可视化

声明:版权所有,转载请联系作者并注明出处:  http://blog.csdn.net/u013719780?viewmode=contentsCONVOLUTIONAL NEURAL NETWORKIn [1]:import numpy as npimport tensorflow as tfim

2016-12-28 11:47:51 7926 2

原创 tensorflow tutorials(八):手写数字数据集MNIST介绍

声明:版权所有,转载请联系作者并注明出处:  http://blog.csdn.net/u013719780?viewmode=contents在做机器学习相关实验的时候,首先我们就是需要一份通用的数据集,以便与其他的算法得到的实验结果进行比较。在图像分类领域MNIST数据集就是这样一个通用的数据集,前面几篇博文都用到了MNIST数据集,本文对其进行一些简单的介绍!

2016-12-22 15:43:03 8565 1

原创 tensorflow tutorials(七):用tensorflow实现卷积神经网络(Convolutional Neural Networks)

声明:版权所有,转载请联系作者并注明出处:  http://blog.csdn.net/u013719780?viewmode=contentsfrom __future__ import print_functionimport tensorflow as tf# Import MNIST datafrom tensorflow.examples

2016-12-22 13:29:32 3924

原创 tensorflow tutorials(六):用tensorflow实现多层感知器(Multilayer Perceptron)

声明:版权所有,转载请联系作者并注明出处:  http://blog.csdn.net/u013719780?viewmode=contentsfrom __future__ import print_function# Import MNIST datafrom tensorflow.examples.tutorials.mnist import i

2016-12-22 11:08:59 5217

原创 tensorflow tutorials(五):用tensorflow实现自编码器(Auto-Encoder)

声明:版权所有,转载请联系作者并注明出处:  http://blog.csdn.net/u013719780?viewmode=contentsfrom __future__ import division, print_function, absolute_importimport tensorflow as tfimport numpy as

2016-12-21 17:40:44 7564

原创 tensorflow tutorials(四):用tensorflow实现最近邻算法(KNN)

声明:版权所有,转载请联系作者并注明出处from __future__ import print_functionimport numpy as npimport tensorflow as tf# Import MNIST datafrom tensorflow.examples.tutorials.mnist import input_dat

2016-12-21 15:44:33 6756 2

原创 tensorflow tutorials(三):用tensorflow建立逻辑回归模型

声明:版权所有,转载请联系作者并注明出处import tensorflow as tfimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_datadef init_weights(shape): return tf.Variable(tf

2016-12-21 14:57:54 3344 1

原创 tensorflow tutorials(二):用tensorflow建立岭回归模型

声明:版权所有,转载请联系作者并注明出岭回归模型与线性回归模型的不同点在于损失函数加了权重的范数from __future__ import print_functionimport tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt%matplotlib

2016-12-14 15:57:09 4245

原创 tensorflow tutorials(一):用tensorflow建立线性回归模型

声明:版权所有,转载请联系作者并注明出from __future__ import print_functionimport tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt%matplotlib inline# Parameterslearning_rate

2016-12-14 15:49:38 4556 3

原创 机器学习实验(十二):深度学习之图像分类模型AlexNet结构分析和tensorflow实现

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents在ImageNet上的图像分类challenge上,Hinton和他的学生Alex Krizhevsky提出的AlexNet网络结构模型赢得了2012届的冠军,刷新了Imag

2016-11-23 18:11:36 12847 3

原创 机器学习实验(十一):基于WiFi fingerprints用自编码器(Autoencoders)和神经网络(Neural Network)进行定位_2(keras版)

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents上一个实验机器学习实验(十):基于WiFi fingerprints用自编码器(Autoencoders)和神经网络(Neural Network)进行定位_1(tensorflow版)是用tensorflow实现

2016-11-22 15:55:44 5985 3

原创 机器学习实验(十):基于WiFi fingerprints用自编码器(Autoencoders)和神经网络(Neural Network)进行定位_1(tensorflow版)

Autoencoders and Neural Network for Place recognition with WiFi fingerprints本文来源于Michał Nowicki⋆and Jan Wietrzykowski 论文的读书笔记论文原文:https://arxiv.org/pdf/1611.02049v1.pdf

2016-11-21 17:08:32 7108 1

原创 机器学习实验(九):基于高斯分布和OneClassSVM的异常点检测

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents大多数数据挖掘或数据工作中,异常点都会在数据的预处理过程中被认为是“噪音”而剔除,以避免其对总体数据评估和分析挖掘的影响。但某些情况下,如果数据工作的目标就是围绕异常点,那么这些异常点会成为数据工作的焦点。 数据集中的异常数据通常

2016-11-18 17:50:44 17374 5

原创 机器学习实验(八):用特征值衰减正则化方法进行深度学习实验_3

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents本文在机器学习实验(六):用特征值衰减正则化方法进行深度学习实验_1的基础上进行第二个实验,本实验以CIFAR10数据集进行实验,相关实验代码如下。

2016-11-17 18:09:07 4558

原创 机器学习实验(七):用特征值衰减正则化方法进行深度学习实验_2

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents本文在机器学习实验(六):用特征值衰减正则化方法进行深度学习实验_1的基础上进行实验,本文以mnist数据集进行实验,相关实验代码如下,本文的实验是用keras写的,keras代码很容易看懂,废话不多说,直接上代码。

2016-11-17 18:03:42 4169

原创 机器学习实验(六):用特征值衰减正则化方法进行深度学习实验_1

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents#This code implements a light version of the Eigenvalue Decay regularizer for#the Keras de

2016-11-17 17:54:56 4393

转载 用matplotlib绘制卷积神经网络(CNN)图

"""Copyright (c) 2016, Gavin Weiguang DingAll rights reserved.Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditio

2016-11-17 11:16:59 10951 1

原创 机器学习实验(五):用迁移学习方法基于keras建立卷积神经网络进行人体动作识别(HAR)

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents博主简介:风雪夜归子(英文名:Allen),机器学习算法攻城狮,喜爱钻研Meachine Learning的黑科技,对Deep Learning和Artificial Intelligence充满兴趣,经常关注Kaggle

2016-11-16 18:17:06 15598 9

原创 机器学习实验(四):用tensorflow实现卷积神经网络识别人类活动

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents博主简介:风雪夜归子(英文名:Allen),机器学习算法攻城狮,喜爱钻研Meachine Learning的黑科技,对Deep Learning和Artificial Intelligence充满兴趣,经常关注Kaggle数据

2016-11-15 22:36:49 13961 8

原创 机器学习实验(三):建立深度学习模型对kaggle保险索赔进行预测

原文作者: Danijel Kivaranovic In [1]:## import librariesimport numpy as npnp.random.seed(123)import pandas as pdimport subprocessfrom scipy.sparse import csr_matrix,

2016-10-28 18:11:17 7707

原创 机器学习实验(二):kaggle保险索赔案例分析

声明:版权所有,转载请联系作者并注明出处  http://blog.csdn.net/u013719780?viewmode=contents原文:http://analyticsbot.ml/2016/10/machine-learning-pre-processing-features/Load raw data

2016-10-28 11:55:30 10568 2

原创 Python基础知识速查(下)

9. DictionariesDictionary properties: unordered, iterable, mutable, can contain multiple data typesMade of key-value pairsKeys must be unique, and can be strings, numbers, or tuplesValues can be a

2016-10-19 14:14:13 4977

原创 Python基础知识速查(上)

Python 基础知识速查Table of contentsImportsData TypesMathComparisons and Boolean OperationsConditional StatementsListsTuplesStringsDictionariesSetsDefining FunctionsAnonymous (Lambda) FunctionsF

2016-10-19 14:12:34 5528

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除