行程问题

本文介绍了行程问题中的相遇和追及问题。相遇问题的核心是速度和,公式为:速度和×相遇时间=路程。例如,两列火车相遇,通过速度和与时间计算第一列车的长度。追及问题的核心是速度差,公式为:速度差×追及时间=追及路程。例如,甲船以每小时4千米的速度差追上乙船,计算两码头的距离。理解并画出行程图能有效提升解题效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.相遇问题
基本思路如下:
甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么
AB之间的路程
=甲走的路程+乙走的路程
=甲的速度×相遇时间+乙的速度×相遇时间
=(甲的速度+乙的速度)×相遇时间
=速度和×相遇时间
“相遇问题”的核心是速度和问题。

【例1】两列对开的列车相遇,第一列车的车速为10米/秒,第二列车的车速为12.5米/秒,第二列车上的旅客发现第一列车在旁边开过时共用了6秒,则第一列车的长度为多少米?
    A.60米    B.75米    C.80米    D.135米         
【解析】这是一个典型的速度和问题,两列火车的速度和为10米/秒+12.5米/秒=22.5米/秒,两列火车以这样的速度共同行驶了6秒,行驶的距离也即第一列火车的长度。
即22.5米/秒×6秒=135米。

相遇问题也常考多次相遇的情况,多次相遇就要考虑到最后一次相遇时,两人所走的总路程是多少。例2是一道二次相遇问题。
【例2】甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的 ,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B点地的距离。( )

A.6800   B.5400   C.7200  D.8900

【解析】两个人第二次相遇时共走了三倍的全程,将全程设为5份,第一次相遇时候乙走了2份,于是知道第二次相遇地点距离第一次相遇地点的路程是4-2=2份。依题意这两份路程的长度是3000米,那么A、B两地相距3000÷2×5=7200米。

 

2.追及问题
基本思路如下:
有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他。这就产生了“追及问题”。实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的速度之差。如果设甲走得快,乙走得慢,在相同时间(追及时间)内:
追及路程
=甲走的路程-乙走的路程
=甲的速度×追及时间-乙的速度×追及时间
=(甲的速度-乙的速度)×追及时间
=速度差×追及时间
 “追及问题”的核心是速度差的问题。
【例3】甲乙两船同时从两个码头出发,方向相同,乙船在前,每小时行24千米,甲船在后,每小时行28千米,4小时后甲船追上乙船,求两个码头相距多少千米?
【解析】甲对乙的追及速度差=28千米/小时-24千米/小时=4千米/小时,追及时间为4小时,则追及的距离为4千米/小时×4=16千米,这也即两码头之间的距离。

【例4】甲、乙两人联系跑步,若让乙先跑12米,则甲经6秒追上乙,若乙比甲先跑2秒,则甲要5秒追上乙,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距多少米?
A.15   B.20   C.25   D.30
【解析】C。解析:甲乙的速度差为12÷6=2米/秒,则乙的速度为2×5÷2=5米/秒,如果乙先跑9秒,甲再追乙,那么10秒后,两人相距5×9-2×10=25米。

      在解相遇和追及问题时,建议同学在草稿纸上画出甲乙两人所走的路线,并且标明个子的速度或者时间,这样方便同学更好理解整个行程过程,对于提高解题速度非常有帮助。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值