基于遗传算法优化的神经网络算法

该博客介绍了一种使用遗传算法优化神经网络的预测方法。首先,定义了网络结构并加载数据,然后初始化遗传算法参数,包括进化代数、种群规模等。接着,通过编码和解码操作进行种群初始化和进化过程,不断调整网络的阀值和权值。最后,将优化后的参数应用于BP网络进行训练和预测,并展示了适应度曲线。
摘要由CSDN通过智能技术生成
%% 该代码为基于遗传算法神经网络的预测代码  
% 清空环境变量  
clc  
clear  
%   
%% 网络结构建立  
%读取数据  
load data input output  
  
%节点个数  
inputnum=2;  
hiddennum=5;  
outputnum=1;  
  
%训练数据和预测数据  
input_train=input(1:1900,:)';  
input_test=input(1901:2000,:)';  
output_train=output(1:1900)';  
output_test=output(1901:2000)';  
  
%选连样本输入输出数据归一化  
[inputn,inputps]=mapminmax(input_train);  
[outputn,outputps]=mapminmax(output_train);  
  
%构建网络  
net=newff(inputn,outputn,hiddennum);  
  
%% 遗传算法参数初始化  
maxgen=20;                         %进化代数,即迭代次数  
sizepop=10;                        %种群规模  
pcross=[0.2];                       %交叉概率选择,0和1之间  
pmutation=[0.1];                    %变异概率选择,0和1之间  
  
%节点总数  
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;  
  
lenchrom=ones(1,numsum);     
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值