%% 该代码为基于遗传算法神经网络的预测代码
% 清空环境变量
clc
clear
%
%% 网络结构建立
%读取数据
load data input output
%节点个数
inputnum=2;
hiddennum=5;
outputnum=1;
%训练数据和预测数据
input_train=input(1:1900,:)';
input_test=input(1901:2000,:)';
output_train=output(1:1900)';
output_test=output(1901:2000)';
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%构建网络
net=newff(inputn,outputn,hiddennum);
%% 遗传算法参数初始化
maxgen=20; %进化代数,即迭代次数
sizepop=10; %种群规模
pcross=[0.2]; %交叉概率选择,0和1之间
pmutation=[0.1]; %变异概率选择,0和1之间
%节点总数
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;
lenchrom=ones(1,numsum);
基于遗传算法优化的神经网络算法
最新推荐文章于 2024-10-04 15:48:34 发布
该博客介绍了一种使用遗传算法优化神经网络的预测方法。首先,定义了网络结构并加载数据,然后初始化遗传算法参数,包括进化代数、种群规模等。接着,通过编码和解码操作进行种群初始化和进化过程,不断调整网络的阀值和权值。最后,将优化后的参数应用于BP网络进行训练和预测,并展示了适应度曲线。
摘要由CSDN通过智能技术生成